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Near-infrared spectroscopy (NIRS) is a non-invasive cortical imaging technique that provides many of the
advantages of cortical fMRI with additional benefits of low cost, portability, and increased temporal resolution—
features that make it potentially ideal for clinical diagnostic applications. However, the usefulness of NIRS is
contingent on the ability to reliably localize the measured signal cortically. Although this can be achieved by
supplementing NIRS data collection with an MRI scan, a much more appealing alternative is to use a portable
magnetic measuring system to record the locations of optodes. Previous work has shown that optode skull
measurements can be projected to the brain consistently within reasonable error bounds. Yet, aswe show, if this
is done without explicitly modeling the geometry of the holder securing the NIR optodes to participants' heads,
considerable bias in the projection loci results. Here, we describe an algorithm that not only overcomes this bias
but also corrects for measurement error in both optode position and skull reference points (which are used to
register themeasurements to standardbrain templates) byapplying geometric constraints. Thismethodhas been
implemented as part of our NIRS Analysis Package (NAP), a public domain Matlab toolbox for analysis of NIRS
data.

© 2011 Published by Elsevier Inc.

Introduction

Near-infrared spectroscopy (for a recent review, see Huppert et al.,
2009; NIRS, Jobsis, 1977) is a non-invasive cortical imaging technique
that measures brain oxygenated and deoxygenated hemoglobin concen-
trations. In thewake of an ever-increasing volume of functionalmagnetic
resonance imaging (fMRI) studies within neuroscience research, recent
years have also seen a marked increase in the use of NIRS in human
imaging studies. Although similar to fMRI in that it measures aspects of
the hemodynamic response, NIRS offers several notable advantages: (1)
portability for utilization in more ecological settings with less compliant
participants (for example, young children), (2) superior temporal
resolution, and (3) lower purchase and operating costs as compared to
fMRI. These improvements come at a price—not only does NIRS suffer
from limited spatial resolution (Cope et al., 1988; Fukui et al., 2003;
OkadaandDelpy, 2003a, b), but in itself doesnot enable exact localization
of themeasuredactivitywithin the cortex.One solution to this problem is
co-registering NIRS measurements with fMRI scans, but the necessity to
do so thereby defeats many of NIRS's important strengths.

One of the most promising alternatives that circumvents this
problem is the use of a 3D magnetic space digitizer to obtain relative

locations of 10–20 standard markers (Jasper, 1958) and the NIR
optodes in a real-world coordinate system. In principle, this
information should suffice to register the measurements to canonical
brain templates, such as the Montreal Neurological Institute (MNI)
template. Yet measurements provide the location of the optode tips
on the skull, rather than the loci from which the signal originates
within the brain. Thus, it is necessary to project the optode contact
points onto the cortical surface before the origin of the NIRS signals
can be established. In a series of elegant studies, Okamoto, Singh and
colleagues showed that optode loci can be projected consistently to
MNI space (Okamoto et al., 2004; Okamoto andDan, 2005; Singh et al.,
2005). Using a database of 17 reference brains, they established the
error bounds of their projection method (the balloon inflation
method) to be within reasonable limits (~1 cm).

However, as we show below, the use of approximate methods of
projection, rather than explicitly computing surface normals to
guide projection, can result in considerable bias. Moreover,
projection inaccuracies can be aggravated by additional factors,
mainly measurement errors occurring in the process of recording
the positions of the optodes and the 10–20 system markers on the
skull.

First, error in localizing the 10–20 markers will result in a flawed
estimate of the structure of the participants' skulls and brains. This is
because both of these structures are estimated solely on the basis of
the 10–20 markers. For example, error in the position of the markers
can result in warping of the estimated brain shape (contraction,
stretching, skewness, etc.). One of the clear marks of such errors is
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exaggerated distance between the optode loci and the estimated
skull surface. As a result, for optode loci to be projected to the cortical
surface they must first be projected to the skull surface. Yet, a single
measurement does not, by itself, afford the information to do so
reliably. In NIRS experiments, optodes are held in place against
participants' heads by an optode holder. Therefore, one way to
alleviate this difficulty is to utilize all of the measured optode loci to
reconstruct the surface of the optode holder. This would enable the
computation of normals to this surface, which in turn would enable
the projection of optodes: first to the skull, and from there to the
cortical surface. Unfortunately, measurement errors in the positions
of the optodes will compromise not only the localization accuracy of
each optode position itself but, worse still, will result in over- or
under-estimation of the curvature of the holder at the projection loci,
which in turn will lead to in inaccuracy in the estimate of the
radiation angle. Therefore it would seem that not only does accurate
localization of measurements necessitate explicit reconstruction of
the optode holder structure but, to do so reliably, it is necessary to
overcome the errors consequent to measuring both optode positions
and the position of the 10–20 markers.

A hint as to how this may be done is found in the structure of the
optode holders: optode holders are constructed from flexible
materials to accommodate differing skull shapes and shafts are
normally evenly spaced on parallel geodesic curves along the surface
of the holder (akin to longitude and latitude line intersections on a
globe). Such well-defined geometric features in the optode positions
can be used to reduce the measurement errors associated with
determining the position of each optode shaft.

In what follows we describe an algorithm that targets the
explicit modeling of the optode holder. Hence, it combines not only
an unbiased projection method but also incorporates several
denoising procedures that enable one to increase the accuracy of
cortical localization. The proposed method results from forcing the
initial measurements to conform to the following ground truths:
(1) optode loci should conform to the actual configuration of
optode shafts within the holder, (2) optodes actually make contact
with the skull at the time of measurement, and (3) optodes are
perpendicular to the holder surface and therefore directly reflect
the geometry of the optode model (which as a result of 1 and 2 is a
smooth approximation of the skull shape). This algorithm is
incorporated in our NIRS Analysis Package (NAP), a publicly
available MATLAB-based toolbox for analysis of near-infrared spec-
troscopy data (http://lsec.neuropraxia.webfactional.com/Software_
and_Instrumentation.html).

Methods

Experimental materials and methods

Participants
We recruited 12 adults (three females), ages 23–39 to participate

in the experiment. All subjects were healthy and free of neurological
or cardiovascular illness. This study was approved by the institutional
review board of Stony Brook University; all participants provided
informed consent.

Data acquisition
An ETG 4000 (Hitachi, Tokyo) 33 optode holder was placed

occipitally and secured using a custom-made cap. To reduce
movement, participants’ heads were stabilized using a custom-
made head-holder. Optode locations were measured using a
Polhemus ISOTRAK II (Inition, London) magnetic tracker, controlled
by thean ETG 4000 in the 33 detectors (52 channels) configuration.
The 10–20 markers (Jasper, 1958) measured were Nz (nasion), Iz
(inion), AR (right ear), AL (left ear), and Cz (midpoint of the crown of
the head).

MNI template
The skull and cortical surface sets of points in MNI space from

Okamoto et al. (2004) were used for all reported computations.

Reference brain data base
The structural data in Okamoto et al. (2004) from 17 brains were

used to determine the error bounds of optode positions.

Data analysis
Data analyses were carried out using Matlab R2010a (Mathworks,

Natick, MA).

Approximate projection methods

Nearest neighbor projection
The nearest neighbor method is simply finding the nearest point

on the cortical surface to each optode locus.

Cortical expansion
The cortical expansion method is finding the point on the cortex

that when multiplied with a scalar is closest to the optode position:

proj optð Þ = arg min
v∈ctx

arg min
a

d opt; avð Þ
� �

= arg min
v∈ctx

opt⋅v
v⋅v

� �

where opt denotes the optode position and ctx denotes the cortical
surface after subtraction of its centroid.

It is important to note that in the case of two concentric spheres
these methods coincide with projection along the normal.

The balloon inflation method
This algorithm, as described by Okamoto and Singh et al. (Okamoto

et al., 2004, 2005; Singh et al., 2005), defines the range of the cortical
surface region by selecting certain numbers of cortical surface points
that are closest from a given head-surface point (P). Conceptually, if one
drew a sphere from a given head-surface point and inflated it gradually
like a balloon, it would cover a certain portion of the cortical surface in a
similar manner. Two hundred cortical surface points closest to a given
head-surface point (P) that roughly cover the cortical region with a
radius of 1 cmare selected. Next the coordinate values for the points are
averaged to yield their centroid (Pce). A virtual rod (r=1mm) through
the Pce and P is taken, and the intersection with the cortical surface
found. Pc was identified as the average of the coordinate values of the
three points closest to P, chosen from among the cortical surface points
that were covered by the rod. Search is limited towithin a range of 1000
points closest to P to prevent the inclusion of points representing an
excessively deep cortical area or points arising from internal debris.

Forward and backward transformation into MNI space

If optodes are to be localized in MNI space, then the measured
10–20 reference points can be mapped to the corresponding loci in
the MNI template by a least squares minimizing linear map (i.e., an
affine transformation; cf. Okamoto et al., 2004). Let {r1 r1 … rk} be a
set of k anatomical reference points (e.g., In, Nz, …) in real-world
coordinates and {R1 R1 … Rk} the corresponding points in MNI

space. The regression problem writes as X =

xr1 xr2 ⋯ xrk
yr1 yr2 ⋯ yrk
zr1 zr2 ⋯ zrk
1 1 ⋯ 1

2
664

3
775

Y =

xR1 xR2 ⋯ xRk
yR1 yR2 ⋯ yRk
zR1 zR2 ⋯ zRk
1 1 ⋯ 1

2
664

3
775 where the least squares solution is given

by B = YXt (XXt)−t. Accordingly, the estimates of the 10–20

reference points in MNI space are Ŷ =

x̂R1 x̂R2 ⋯ x̂Rk
ŷR1 ŷR2 ⋯ ŷRk
ẑR1 ẑR2 ⋯ ẑRk
1 1 ⋯ 1

2
664

3
775 = BX.
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Yet, by the same token, the map B is uniquely associated with an
inverse map (B−1). The inverse transform can be used to estimate the
participants' brain and skull surface in real-world coordinates. Let
ctxMNI and HMNI denote the cortical and skull surface in MNI space.
Therefore, the estimate of the participants' brain surface and skull
surface will be given by B−1 (ctxMNI) and B−1 (HMNI), respectively.

Overview of the proposed method

The method we propose comprises several distinct phases:
(1) correction of errors in optode locations, (2) correction of error
in anatomical marker position, (3) fitting the optodes with an explicit
model of the optode holder, (4) projection of this model to the cortical
surface, and (5) computing the location of channels.

Correction of errors in optode locations
In our data we applied the following constraints: forcing optode

rows to be parallel, forcing optodes to be evenly spaced on each row,
and forcing each optode column to lie on a plane.

To force optode rows to be parallel, they are regressed to a least
squares plane. Given a set of points vif g = xi; yi; zið Þf g∈R3 the least
squares plane is given by the first two principal components of the data.
Accordingly, projecting out the normal to this plane (i.e., the principle
component associated with the smallest eigenvalue) forces a set of
points to lie on the least squares plane. That is, if we denote the normal

as n = arg min
‖u‖=1

λ jV̂ V̂
t
u = λu

n o
, where V̂ =

x1−x ⋯ xk−x
y1−y ⋯ yk−y
z1−z ⋯ zk−z

2
4

3
5, then

the aligned set of measurements is given by
⌢
V = V−n ntVð Þ. Therefore,

to align all of the optode rows, the mean of each row must first be
removed from the points it comprises and then the normal of the entire
set of points is projected out. Finally, the original mean of each row is
added to each row in turn.

Next, optode loci are spaced evenly along the spline curves
connecting each row. This is done by fitting each optode row with a
natural spline (see Appendix), parameterized to the interval [0 1].
Thus, the arc-length formula can be used to solve for k evenly spaced

points l tið Þ = ∫
ti

0

‖γ′ tð Þ‖dt =∫
1

0

‖γ′ tð Þ‖dt = i−1
k−1, where γ′(t) is the

tangent to the spline.
Finally, to force optode columns to lie on a plane they are first

projected to the row plane. This is done by subtracting the mean from
each optode row and then projecting each point on the first two
principle components of the data (computed as described above).
Next, each column (which in the new coordinates is 2D) is regressed
to a least squares line. This is again achieved by computing the
principal components of each column and then projecting out the
component associated with the smaller eigenvalue. The resulting
points are then projected back to the original space by multiplying
them by the row plane vectors. To complete the transformation back
into the initial coordinates the mean position of each optode loci row,
which was subtracted initially, is re-added to that row.

Correction of errors in marker position
Errors in localizing the 10–20 reference points on participants'

skulls result in an exaggerated distance between the optode loci and
the surface of the skull. Thus, an error in one position could potentially
cause a bias in the position of all optodes. Moreover, the distance from
the skull reflects a possible discrepancy between the curvature of the
reconstructed holder geometry and the skull shape, which could
cause a change in the angle of the normal to the surface. However, if
the markers were shifted to their correct positions, then the average
distance would be greatly reduced and the estimation accuracy of the
holder curvature would be increased. Therefore, allowing the
recorded reference points to vary in position within the bounds of

the measurement error until this distance is minimized would correct
for the initial error.

This can be formalized as a straightforward optimization problem
in the following manner. Let Af : R3×k×2→R3×3 be the function that
matches pairs of ordered sets of k 3D points with a unique affine
transformation matrix B, and let Dhead : R3×n→R be the function
that matches each set of n 3D points with the mean distance to the
skull surface. Therefore, to correct such errors the expression
arg min

v
Dhead Af V + 0 ⋯ v ⋯ 0½ �;Mð Þ Optð Þð Þ needs to be solved

for each reference point vi sequentially, where Opt denotes the
optode loci set (matrix), V the real-world markers and M the
corresponding 10–20 markers in MNI space. To keep the solution
ecologically valid, two additional constraints need to be placed: change
in each coordinate for the reference point must be bound by the degree
of measurement error and change in orientation of the mid-plane (to
which optode rows are parallel) after the correction must not exceed
some reasonable limit. That is, for each measured reference
point |vix − vx|, |viy − vy|, |viz − vz| b ε, and angle (Af(V,M)(Opt),
Af (V + [0 ⋯ v ⋯ 0], M)(Opt)) b θ, where the angle matches each
set of optode loci with a mid-plane (see preceding section).

By carrying out repeated measurements of single markers, we
acquired independent measurements to establish the error bounds of
individual marker measurements and found that error was contained
within a 5-mm sphere. Accordingly, when applying the optimization
to our data we limited the search volume to this range. As a bound on
θ we made a conservative choice of 1°.

We chose to utilize the pattern search algorithm (Lewis and
Torczon, 1999) to solve the abovementioned problem. This is a
gradient free global optimization algorithm for bound non-linear
optimization problems that solves problems iteratively through grid
refinements until the objectives are met.

Projection to the brain and reconstruction of optode holder geometry
After correction of measurement errors, the optode loci can be used

to reconstruct the holder surface. This can be done by fitting the optode
contactswith a thinplate spline (Bookstein, 1989;Duchon, 1977).A thin
plate spline (TPS) is the smooth surface f that passes through a given set
of control points (i.e., the optode contacts in our case)whileminimizing

the bending energy: BE = ∫∫ ∂2f
∂x2

� �2

+ 2
∂2f
∂x∂y

� �2

+
∂2f
∂y2

� �2" #
dxdy.

It is this latter property that makes this model appropriate for the
current setting.

Let x∈R2 be a query point and cif g∈R2 a set of control points. The
thin plate spline describing the smooth surface connecting these

points is TPS xð Þ = ∑
i
wiΦ rið Þ + ∑

2

j=1
bjxj + b0, where ri = ||x − ci||

and Φ (r) = r2 ln (r) (apart from r=0 where Φ = 0), wi are the
coefficients of the higher order terms and bi the linear coefficients.
As a TPS is a 2D model it is necessary to rotate the data appropriately
before fitting control points with the surface (e.g., by finding the
rotation maximizing the z coordinate of the optode contacts). After
applying this rotation the model can be fit by solving the linear

system X w
b

� �
= Opt zð Þ (where Opt(z) denotes the z coordinates

of the optode contacts) and X = Φ A
At 0

� �
(where ϕij = d(Opt(xy)i,

Opt(xy)j)2 ln(d(Opt(xy)i, Opt(xy)j)), d(⋅,⋅) is the Euclidean distance
function and the rows of the matrix A are given by Ai =[Opt(x)i Opt
(y)i 1]).

Once the holdermodel has been fitted to the optode loci, themodel
can be used to correct residual measurement errors in optode
positions and strictly enforce the ground truth by embedding the
optode contacts within the estimated skull surface. This is achieved by
isometrically embedding the geodesics connecting the optode loci
within the skull surface. To do so, the geodesics must first be
numerically approximated. We have found that an effective way of
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achieving this is by using a cubic spline (see Appendix) connecting the
control points as an initial guess and then embedding it within the
holdermodel by projection along the normal at each point. The normal
to a spline curve is given by n= γ″(t)− 〈γ″ (t), γ′ (t)〉/||γ′(t)||2 where
γ′(t) is the tangent to the spline.

Once the geodesics are approximated, themidpoint of themodel is
forced to make contact with the skull surface by projecting along the
normal to the holder model surface (see details below). The
intersection of the middle optode plane and the skull surface can
then be found. The resulting set of points is fitted with a smoothing
spline (Reinsch, 1967; see Appendix), which represents the cross
section as a smooth dense curve. Next, the distance between the
control points along the geodesics is computed numerically, and the
corresponding points matching the optode-to-optode distances on
the skull contour are found (againwith the arc-length formula above).
This is first done for the midline (column) geodesic of the holder

model and then for each optode row in turn. The end result is a
minimally distorted embedding of the optode loci, which preserves
distances and angles to the extent possible.

Finally, the rectified optode positions can be refit with a holdermodel
and the computednormal can be used to project the optode contacts onto
the cortical surface. To compute the normal of the surface it is convenient
to express the surface implicitly as F (x, y, z) = z − TPS(x, y). Under this
representation, the surface is givenbypoints satisfying F(x, y, z=0). Thus,
the normal is given by the gradient of the function (as it is orthogonal to

the level set): i.e., ∇F x; y; zð Þ = −∂TPS
∂x x; yð Þ −∂TPS

∂y x; yð Þ 1
� �t

where
∂TPS
∂x = ∑

i
wi x−cxið Þ 1 + 2 log rð Þð Þ. Consequently, the normal

at an optode contact Opti can be computed explicitly and used to
project the contact point to the cortical surface. If Ni denotes the
normal to the ith contact point and Dctxthe distance function to the

Fig. 1. The importance of exact cortical projection methods. (a) A horizontal slice (z=50) of the contours of the brain and skull taken from the MNI brain. Two points on the skull
were selected and projected to the cortical surface via three methods: finding the nearest neighbor (NN), cortical expansion, and projecting along the normal to the skull. Even in the
simplified 2D scenario, the discrepancy between the exact method and the approximation can be asmuch as 5 mm. (b) A comparison of the balloon inflationmethod (Okamoto et al.,
2004) to projection along the normal to the skull. Each point on the skull surface of the MNI brain was projected to the cortical surface using the two methods and the Euclidean
distance between each pair of points corresponding to a given point on the skull was measured. On average, the discrepancy was about 4 mm (3.83±1.9 mm).
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set of cortical surface points, then the optode radiation is found by
solving arg min

a
Dctx Opti + aNið Þ.

Establishing channel positions
Once the optodes have been projected to the cortical surface, they

can be transformed to MNI space and the channel loci can be
established. A channel is defined as themidpoint between two optode
(i.e., source detector pair) radiations. Thus, to localize a channel
position on the cortical surface, it is necessary to first intersect the
equidistant plane to the radiations with the cortical surface and then
locate the point that minimizes the distance to the radiations. Let Ctx
denote the cortical surface in MNI space and Opti and Optj the two
radiations. A point v on the equidistant plane satisfies 〈v, Opti −
Optj = 0〉. Thus, if nij =

1
‖Opti−Optj‖

Opti−Optj
� �

, the distance of a

point x∈ Ctx to this plane is 〈x−mij, nij〉, wheremij =
1
2

Opti + Optj
� �

.

Let Ctxij be the set of points in Ctx that are at most a voxel away
from the equidistant plane. A channel is given by the member
of this set that minimizes the distance to both radiations,
Chnlij = min

x∈Ctxij
d x;Optið Þ + d x;Optj

� �� �
, where d(⋅,⋅)denotes the Eu-

clidean distance function.

Estimation of the localization error bounds due to anatomical differences

Okamoto et al. (2004) suggest the following method to assess the
error bounds of localization due to anatomical differences between a
subject's actual brain, and the target template (e.g., the MNI brain):
rather than projecting the measured optode positions to MNI space
directly through utilizing the measured anatomical landmarks, the
optode loci are computed on a database of 17 brains, each of which is
used as the target template. This is followed by projecting the
resulting loci to theMNI brain using an affine transformation based on
the 10/20 markers (see Forward and backward transformation into
MNI space). This allows one to compute the spatial deviation in
position after transformation to MNI space for the resulting 17
projections. The spatial deviation is given by the standard deviation of
xyz coordinates—the square root of the pooled variance.

The same method can be applied to estimate the localization error
bounds due to anatomical differences for our projection algorithm. To
do so, our method is applied to the initial measurements using each of
the 17 reference brains, in place of the MNI brain, as a target template.
Next, each resulting set of loci (17, one for each brain) is transformed
to MNI space.

Estimating the effect of denoising on localization accuracy

To assess the effect of denoising on the accuracy of cortical
localization, analysis is carried out on the distribution of optode
radiations at the group level. To this end, the method described above
is applied to data with and without denoising (i.e., in the latter
scenario, data were simply fit with a holder model as is). In our
experiment, the optode holder was positioned on participants' heads
by aligning themiddle optode shaft with themidline of the back of the
skull. In the ideal scenario, if one were to obtain perfect measure-
ments, one would expect no variance in optode position across
subjects for the middle optode shaft. If so, the further away optode
shafts are, the more divergence one would find resulting from
variation in head size. Therefore, the average distance of optode
radiations to the respective group centroids (i.e., the average position
for each optode across subjects) is expected to increase as a function
of distance from the mid-optode centroid. Accordingly, in order to
compare the average distance to optode centroids between the two
projection methods, this effect needs to be factored out.

To model the effect of distance from middle on position
divergence, the points are fit with a quadratic linear model. Therefore,

to estimate the fraction of cluster divergence resulting solely from
noise, the fraction of variance explained by distance (i.e., the quadratic
trend) is regressed out of the data if the fit is significant. The
remaining difference between groups results purely from the
difference in the denoising procedures.

Results

Okamoto and Dan (2005) suggest that the exact method of
projecting optode skull positions to the cortical surface is by computing
the normal to the tangent plane at the point of contact. However, for
practical reasons they suggest using approximate methods. Therefore,
we set out to determine to what extent employing approximate
methods results in consistent deviation from projection along the
normal. We compared three approximate methods of projection to
projection along the normal: nearest neighbor (NN), cortical expansion
(CE), and balloon inflation (Okamoto et al., 2004, 2005; Singh et al.,
2005; see Approximate projection methods).

In Fig. 1a, a horizontal section (z=50) of the skull and brain
surface of the MNI template are shown. Even in the 2D case the
discrepancy between normal projection and the NN and CE methods
can exceed 5 mm. The results of the comparison between the normal
projection and the balloon inflation method are shown in Fig. 1b. This
method results in considerable bias: on average, 3.83±1.9 mm.

We corrected the raw optode position measurements by enforcing
geometric constraints, reflecting the optode holder structure on the
measurements. Optode rows and columns were made parallel and
optode positions were evenly spaced (see Correction of errors in
optode locations). Fig. 2 shows the results of this procedure applied to
the measurements taken from a representative participant. As can be
seen, after application of these constraints, the measurements reflect
the actual physical state with greater accuracy.

Next, we corrected error in the marker positions by finding the
displacement that would minimize the optode-to-skull distance in
MNI coordinates. This was achieved by a constrained optimization
procedure (see Correction of errors in marker position), which
maintained the orientation of the optode positions, while searching
in a volume determined by an independent assessment of the error
measurement. In our data, without correction, after projection into
MNI space the average distance of the optode loci to the cortical
surface was 6.1±4.25 mm. As can be seen in Fig. 3a, the above
optimization reduced the optode-to-skull distance as well as standard
deviation from 6.1±4.25 mm to 2.55±2.27 mm, respectively. As
illustrated in Fig. 3b, the convergence properties of this method are

Fig. 2. Correcting errors in optode position via geometrical constraints. In NIRS
experiments, optodes are secured to participants' scalps by an optode holder. The well-
defined geometry of the holder can be used to derive constraints that allow one to
reduce measurement error for individual optode positions. In this case, the original
measurements (red) were forced to lie on parallel planes (rows and columns) by
regression to the least squared planes (i.e., the principle components) and were evenly
spaced (row-wise) on cubic spline curve fits. The result is shown in green.
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Fig. 4. Registration of correctedmeasurements to the cortical surface. The process is illustratedwith data from a representative participant. (a) The optode holdermodel. After correction
formeasurement errors, the optode positions are fittedwith a smooth surface: a thin plate spline (TPS). The numeric approximations of the geodesics are overlaid on themodel surface in
yellow. These are used to numerically approximate an isometric embedding to the ideal skull template. (b) The advantage of explicitlymodeling the optode holder as a parametric surface
(contours in blue) is the ability to compute the surface normals exactly (yellow), thus enabling one to project the optode/skull contact points (red) to the cortical surface (green). (c) After
projecting the optodes to the brain (blue), the channel positions can be computed (red). (d) To assess the uncertainty in position resulting from individual anatomical variance, the same
procedure was carried out on the reference set of 17 brains (Okamoto et al., 2004, 2005; Singh et al., 2005). The results were then transformed to MNI space and the associated standard
deviation computed. The error on average was 4.32±0.62 mm, while for the method of Okamoto and Singh et al. (Okamoto et al., 2004, 2005; Singh et al., 2005), the average error was
6.12±1.24 mm – pb1×10−7 on a two-sample t-test (df=32). The samewas true for all 12 participants (4.36±0.82 vs. 6.24±1.39 mm, pb1×10−91on a two-sample t-test (df=395)).

Fig. 3. Correction of measurements of anatomical landmarks. Measurement errors in localizing the markers on the skull surface can result in optode positions that are “free-floating.”
After being affine transformed to MNI space optodes can be removed from the skull surface by as much as 1 cm (6.1±4.25 mm). Measurement errors can be reduced by non-linear
bound optimization in which marker positions are varied within the bounds of the observed measurement error (~5 mm), such that the new affine transformation to MNI space
yields the minimal average distance of the optode positions to the skull. This is done under the constraint that the resulting points will maintain an orientation that is removed by at
most one degree from the orientation of the original transformed points. (a) After optimization, the average distance to the skull is reduced as is the associated standard deviation
(6.1±4.25 mm compared with 2.55±2.27 mm). (b) The average group optode positions are shown before (red) and after (green) correction (both following geometric correction).
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very satisfactory: in red, the average optode positions for all
participants (after correction for optode position error, N=12) are
displayed next to the MNI skull surface and, in green, after application
of the above algorithm.

Next, residual errors in optode positions were corrected by
isometric embedding (see Projection to the brain and reconstruction
of optode holder geometry). As a result, optode loci were strictly
embedded in the real-world coordinate estimate of each participant's
skull surface (computed via the backward MNI transform; see Forward
and backward transformation into MNI space). Finally, the optodes
were fitted with an explicit surface modeling the holder, which in turn
allowed us to project optode loci to the cortical surface, and
subsequently to MNI space via the forward transform (see Forward
and backward transformation into MNI space). The results of the above
procedure applied to the same representative participant of Fig. 3 are
shown in Fig. 4a and b. We then determined channel positions (see
Establishing channel positions) for each subject. Fig. 4c shows the
channel positions (blue) alongside the optode loci for that same subject.

To assess the error bounds of localization due to anatomical
differences, we followed the method suggested in Okamoto et al.
(2004; see Estimation of the localization error boundsdue to anatomical
differences), which utilized their reference set of 17 brains. For our
representative participant, the error on average was 4.32±0.62 mm
while for the method of Okamoto et al. (2004, 2005) the average error
was 6.12±1.24 mm; pb1×10−7 on a two-sample t-test (df=32). The
error bounds for our representative subject are shown in Fig. 4d,
represented by the diameter of the optode markers.

The same was true for all 12 participants (4.36±0.82 vs.
6.24±1.39 mm – pb1×10−91 on a two-sample t-test (df=395)). Fig. 5
shows a comparison of the results of our method and the method
described in Okamoto et al. (2004, 2005) for our representative
participant, as well as one other participant in our sample.

To assess the effect of denoising on the accuracy of cortical
localization, we carried out analyses on the distribution of optode
radiations at the group level. To this end, we applied the method
described in Estimating the effect of denoising on localization accuracy
to our data, with and without denoising (i.e., in the latter scenario data
was simply fit with a holdermodel as is). Prior to further analysis it was
necessary to discard the data of three subjects due to faulty initial
placement of the optode holder (see Supplementary Fig. 1).

In Fig. 6b, the average distances to each optode centroid (average
optode position across subjects) after computing optode positions
with (green) and without denoising (red) are shown. As can be seen,
after denoising, points exhibit a clear effect of distance to the mid-
optode. The effect of distance from the middle on position divergence
was modeled with a quadratic linear model (Estimating the effect of
denoising on localization accuracy). Indeed, a significant fit was found
for the denoised data (F=64.36, df=(2,30), pb10−8, shown in black
in Fig. 6b). However, for data that weren't denoised, the underlying
structure was masked by noise and no such trend was found
(F=2.46, df=(2,30), pN0.1). Therefore, to estimate the fraction of
cluster divergence resulting solely from noise, the fraction of
variance explained by distance (i.e., the quadratic trend) was
regressed out of the denoised data (Estimating the effect of
denoising on localization accuracy; Fig. 6c). The remaining differ-
ence between groups results purely from the denoising proce-
dures. The difference is on average 3.45 mm (pb10−25 on a one-
sided t-test, df=32). This means that, on average, the group optode
radiation clusters shrunk in diameter by 7 mm. The distribution of
group optode radiations before (green) and after (red) denoising
are shown in Fig. 6d–e. As can be seen, denoising tightens group
position clusters significantly.

The distribution for optode positions registered by the method of
Okamoto and Singh et al. (Okamoto et al., 2004, 2005; Singh et al.,

Fig. 5. Comparison to the probabilistic method (Singh et al., 2005). (a) The registered optodes of a participant using the algorithm described by Okamoto and Singh et al. (Okamoto
et al., 2004, 2005; Singh et al., 2005). (b) The registered optodes applying the procedure described in this manuscript. (c–d) The same for an additional participant.
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2005) is shown in Fig. 6f. We applied the same analysis (Estimating
the effect of denoising on localization accuracy) to these data, and
again found that distance dependency is masked (F=0.95, df=
(2,30), pN0.39 for the fit to a quadratic model). A comparison, after
distance dependency was regressed out from the denoised data,
yielded an average difference of 2.56 mm (pb10−13, df=32). Thus,
on average our method yielded a tightening of the diameter of group
optode position clusters equal to 0.5 cm.

Discussion

Herewe describe amethod of localizing NIRSmeasurements in MNI
(or any other standard template) space without MRI, as implemented
in our publicly available toolbox, the NIRS Analysis Package (NAP:
http://lsec.neuropraxia.webfactional.com/Software_and_Instrumenta-
tion.html). This method comprises the following steps:

• Correct optode positions to correspond to holder geometry.
• Correct 10–20 systemmarker positions by finding the displacement
that results in an affine transformation B to MNI space that
minimizes the optode to cortical surface distance.

• Fit optode loci with a thin plate spline modeling the optode holder.
• Correct residual error in optode positions by isometric embedding of
the holder model in the estimated skull surface (i.e., B−1 (HMNI))

• Refit the embedded optode loci with a thin plate spline model.
• Project optodes along the normal to the holder model surface to the
estimate of the cortical surface.

• Transform optode projections to MNI space and compute channel
positions.

We show that this method is consistent: as has been previously
reported for the method of Okamoto and Singh et al. (Okamoto et al.,
2004, 2005; Singh et al., 2005), the error bounds resulting from
individual anatomical differences are within 1 cm. However, due to
the explicit modeling of the optode holder, it is now also possible to
avoid inherent inaccuracies in the localization of optode radiations
and moreover, to denoise the original measures by enforcing
constraints derived from its geometry.

Due to reduction in projection inaccuracies (Fig. 1), reduced error
resulting from anatomical variation (Fig. 4) and increased accuracy
afforded by denoising procedures (Fig. 6), our method achieved
increases in accuracy of at least 6 mm (on average) compared to the

Fig. 6. The effect of denoising on registration accuracy. (a) A schematic illustration depicting the source of the distance dependency. If a curved optode holder is fixed to the skull of
people with varying head sizes by positioning its center according to some fixed anatomical marker (e.g., inion) the variance across subjects will be minimal in the center position
and increase as a function of distance from the center (b) The distribution of average distance of optode radiations to the group centroid as a function of distance from the mid-
optode centroid. Each point represents the average distance across subjects for a given optode to the average position of that optode. In red, points derived from projection after
fitting optode positions with a smooth plate spline model without denoising. In green, points derived following the complete procedure described above. As can be seen, after
denoising, points exhibit a clear effect of distance from themid-optode. In black, the fit of a quadratic linear model (F=64.36, df=(2,30), pb10−8). The red points do not exhibit such
a trend (F=2.46, =(2,30), pN0.1); the underlying structure is masked by noise. (c) The same points in (a) after the fraction of variance explained by distance (i.e., the quadratic
trend) is regressed out. The remaining difference between groups results purely from the denoising procedures. The difference is on average 3.45 mm (pb10−25 on a one-sided t-
test, df=32). This means that, on average, the diameter of the group optode radiation clusters grows tighter by 7 mm. (d–e) The distribution of group optode projections before (red)
and after (green) denoising. As can be seen, denoising tightens group position clusters significantly. (f) The distribution of optode positions registered by themethod of Okamoto and
Singh et al. (Okamoto et al., 2004, 2005; Singh et al., 2005). The same analysis as in (b) shows that with this method distance dependency is again masked (F=0.95, df=(2,30),
pN0.39 for the fit to a quadratic model). A comparison after distance dependency is regressed out yielded an average difference of 2.56 mm (pb10−13, df=32). Thus, on average our
method yielded a tightening of the diameter of group optode position clusters by 0.5 cm.
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commonly used method of Okamoto and Singh et al. (Okamoto et al.,
2004, 2005; Singh et al., 2005). In worst-case scenarios, our method
increases accuracybyover 1 cm. Theoutcomeof this procedure is a set of
points that best represents theground truth at the timeofmeasurement.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.03.068.
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Appendix: Natural and smoothing splines

A natural spline is function constructed of piecewise third-order
polynomials thatpass througha set of control points, Yif g∈Rn, i=0… k.
We will describe the 1D case for simplicity's sake as multidimensional
splines are simply constructed from fitting splines to each coordinate.

The pieces' splines are parameterized by t ∈ [0 1], and follow the
form: Yi = ai + bit + cit

2 + dit
3. The derivatives and second

derivatives of the pieces are forced to coincide in the control.
The second derivative of each polynomial is set to zero at the

endpoints, since this provides a boundary condition that completes
the system of equations. This produces a so-called "natural" cubic
spline and leads to a simple tridiagonal system, which can be solved to
give the coefficients of the polynomials, i.e.,

2 1 0
1 4 1 q

1 4 1
1 4 1
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q 1 4 1

0 1 2

2
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777777775
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=

3 y1−y0ð Þ
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3 y3−y1ð Þ
3 y4−y2ð Þ

]
3 yk−yk−2ð Þ
3 yk−yk−1ð Þ

2
666666664

3
777777775
:

A smoothing spline results from adding a smoothing term to the
polynomial pieces. In this scenario the spline no longer strictly passes
through the control points but rather minimizes the expression:

p∑
i

yi−Si 0ð Þð Þ2 + p−1ð Þ∫ d2s
dx2

� �2

dx. Hence, the parameter p controls

the degree of smoothing, ranging from 1 in which there is no
smoothing to 0, in which there is maximal smoothing.
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