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a b s t r a c t 

The fMRI community has made great strides in decoupling neuronal activity from other physiologically induced 
T 2 

∗ changes, using sensors that provide a ground-truth with respect to cardiac, respiratory, and head movement 
dynamics. However, blood oxygenation level-dependent (BOLD) time-series dynamics are also confounded by 
scanner artifacts, in complex ways that can vary not only between scanners but even, for the same scanner, 
between sessions. Unfortunately, the lack of an equivalent ground truth for BOLD time-series has thus far stymied 
the development of reliable methods for identification and removal of scanner-induced noise, a problem that 
we have previously shown to severely impact detection sensitivity of resting-state brain networks. To address 
this problem, we first designed and built a phantom capable of providing dynamic signals equivalent to that 
of the resting-state brain. Using the dynamic phantom, we then compared the ground-truth time-series with its 
measured fMRI data. Using these, we introduce data-quality metrics: Standardized Signal-to-Noise Ratio (ST- 
SNR) and Dynamic Fidelity that, unlike currently used measures such as temporal SNR (tSNR), can be directly 
compared across scanners. Dynamic phantom data acquired from four “best-case ” scenarios: high-performance 
scanners with MR-physicist-optimized acquisition protocols, still showed scanner instability/multiplicative noise 
contributions of about 6–18% of the total noise. We further measured strong non-linearity in the fMRI response for 
all scanners, ranging between 8–19% of total voxels. To correct scanner distortion of fMRI time-series dynamics 
at a single-subject level, we trained a convolutional neural network (CNN) on paired sets of measured vs. ground- 
truth data. The CNN learned the unique features of each session’s noise, providing a customized temporal filter. 
Tests on dynamic phantom time-series showed a 4- to 7-fold increase in ST-SNR and about 40–70% increase in 
Dynamic Fidelity after denoising, with CNN denoising outperforming both the temporal bandpass filtering and 
denoising using Marchenko-Pastur principal component analysis. Critically, we observed that the CNN temporal 
denoising pushes ST-SNR to a regime where signal power is higher than that of noise (ST-SNR > 1). Denoising 
human-data with ground-truth-trained CNN, in turn, showed markedly increased detection sensitivity of resting- 
state networks. These were visible even at the level of the single-subject, as required for clinical applications of 
fMRI. 
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. Introduction 

Large-scale investments in the identification of fMRI-derived
iomarkers for brain-based disorders are a testament to the anticipated
romise of fMRI as a neurodiagnostic tool. Yet even once clinical neu-
oscience establishes reliable biomarkers, a critical rate-limiting factor
n the use of fMRI in clinical practice will be fMRI’s poor signal/noise
rofile for single-subject level analyses. The task-free, “resting-state ”
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aradigms most likely to be utilized in a clinical setting (because of
heir limited reliance on patient training, engagement, and compliance)
nly exacerbate this problem. Task-based designs, in principle, clearly
elineate between activation in response to a task (signal) and activa-
ion during baseline (noise). However, task-free paradigms, by defini-
ion, lack the experimental manipulation that would typically be used
o distinguish between fluctuations of interest (signal) from fluctuations

f nuisance (noise) ( DeDora et al., 2016 ). Without a principled way to
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istinguish between signal and noise, we lack the feedback necessary to
ptimize for one while removing the other, thereby limiting our abil-
ty to achieve the kind of advances in detection sensitivity required to
nhance fMRI’s utility in evaluating the single patient. 

FMRI’s signal is conventionally derived from the blood oxygenation

evel-dependent (BOLD) contrast. This activity represents regional time-
arying changes in the concentration of deoxygenated hemoglobin, fol-
owing neural-activity induced by exogenous stimuli or spontaneous
uctuations of the resting state. These time-varying changes reflect
hanges in apparent transverse relaxation time T 2 

∗ , an MR parameter
ensitive to levels of deoxyhemoglobin, and hence responsible for the
bserved BOLD contrast. Ideally, the value measured at each voxel at a
iven time point should only change in response to T 2 

∗ changes driven
y neural activity (fluctuations of interest, signal). However, in practice,
he measurement is dependent on a complex interaction between acqui-
ition parameters (flip-angle: 𝛼, echo-time: TE, repetition-time: TR), MR
arameters (longitudinal relaxation time T 1 , apparent transverse relax-
tion time T 2 

∗ , proton density within a voxel) and background noise
 Lauterbur, 2000 ). Change in any of these parameters introduces vari-
nce (fluctuations of the nuisance, noise) in the observed voxel time-
eries. The difficulty of maintaining fidelity to actual (neuronal) time-
eries dynamics is made even more acute by the fact that BOLD contrast
onstitutes only a small fraction (typically, less than 5%) of the total
easured signal. 

Fluctuations of nuisance in the fMRI time-series originate from two
ources: the individual being scanned (physiological noise, due primar-
ly to cardiac, respiratory, and motion effects) as well as the scanner
tself. Physiological processes like respiration or cardiac pulsations can
ause changes in blood flow (affecting T 1 and T 2 

∗ ), and thus tempo-
al variations in magnetization that might artifactually appear to be a
OLD effect. Subject head motion causes relative displacement of vox-
ls leading to temporally correlated non-stationary noise and can in-
uce spurious correlations in the resting-state analysis ( Power et al.,
012 ). As significant as these artifacts are, the fact that cardiac, respi-
atory, and motion variables permit external measurements (e.g., ECG
or heart rate) have permitted the field to develop an impressive ar-
ay of well-validated methods with which to both identify and mitigate
heir influence. Examples of strategies for targeting physiological and
otion confounds include: selecting acquisition parameters designed to
ermit thermal noise to dominate physiological noise ( Wald and Poli-
eni, 2017 ); techniques to address breathing-related field fluctuations

oth prospectively ( Duerst et al., 2015 ) and at image reconstruction
tage ( Bollmann et al., 2017 ); use of simultaneously recorded measure-
ent of heart-rate, respiration, and motion to retrospectively remove
hysiological confounds ( Caballero-Gaudes and Reynolds, 2017 ); and
otion-correction implemented prospectively ( Zaitsev et al., 2017 ) or

etrospectively through registration. 
In contrast, the lack of a ground truth for fMRI time-series has not

ermitted the same strategies for identification and removal of scanner-
nduced noise, which can vary not only between scanners of the same
ake and model, but even within the same scanner during different

essions. These fluctuations of nuisance originate from imperfections of
he instrumentation and the electromagnetic fields used for the measure-
ent and are normally referred to as “scanner instability. ” This nomen-

lature is, itself, potentially misleading, since detection-sensitivity of
esting-state networks requires simultaneously amplifying fluctuations
f interest while suppressing fluctuations of nuisance. Indeed, we have
reviously shown that typical methods that focus entirely on suppress-
ng fluctuations (optimizing solely for scanner “stability ”), such as tem-
oral signal/noise (tSNR), actually deoptimize detection-sensitivity of
esting-state networks, because the damped fluctuations include not
nly suppressed noise but also suppressed signal ( DeDora et al., 2016 ). 

Different approaches tackle the problem of minimizing scanner arti-
acts based upon models of MR-physics. Such methods include reducing
he effects of eddy currents by the use of actively shielded gradients
nd pre-emphasis filters, the use of navigators and calibration echoes,
r NMR probes ( Kasper et al., 2015 ) that provide concurrent field moni-
oring with correction during image reconstruction. Yet modeling-based
pproaches, while valuable in their own right in terms of contributing
o our understanding, can fall short as a practical tool for optimizing
esting-state signal/noise (SNR). The reason for this is that they tend to
versimplify processes that, in an actual testing environment, are fun-
amentally complex —involving multiple factors, both known and un-
nown, which interact with one another in nonlinear and nonstationary
ays. For example, scanner instabilities may be caused by variation in
ip angle over time, imperfections in gradient system, heating, time-
arying eddy current effects, or gain changes in transmit and receive
hains ( Greve et al., 2013 ; Liu, 2016 ). Time-varying gradients in fast
maging methods, such as interleaved echo-planar imaging (EPI), re-
uire high-gradient amplitudes and slew-rates, pushing the scanner to
ts limits and causes image artifacts due to k-space trajectory deviations.
nhomogeneity in B 0 field and perturbations in gradient field cause eddy
urrents, ghosting, geometric distortions, errors in phase encoding lead-
ng to voxel displacement, gain-drifts, and other distortions ( Jezzard and
lare, 1999 ). While scanner instability is multiplicative, the impact of
hermal/background noise on fMRI time-series is additive and can arise
ue to a random process like Brownian motion of ions in MR electronics
r the human subject, external RF noise sources in the scanner room,
r RF spikes dues to intermittent contact between metallic components
 Greve et al., 2013 ; Liu, 2016 ). 

In a clinical setting involving decision-making for a single patient,
he impact of errors that fluctuate over time and are signal dependent
annot be remedied by increasing sample size, under the assumption
hat signal amplifies while noise cancels. Longitudinal comparison of
cans acquired pre and post treatment cannot be interpreted if both
he subject and scanner are changing over time (for example, in us-
ng resting-state fMRI in pre-surgical localization, surgical planning in
pilepsy, and identifying subjects with Alzheimer’s Disease ( Lee et al.,
013 )). Moreover, biomarkers used at one site may be difficult to com-
are across other sites. Even in the research domain, recent years have
een a tremendous increase in efforts in pooling fMRI data for increas-
ng sample size, enhancing statistical power for detecting subtle ef-
ects, including diverse populations and disease etiologies ( Van Horn
nd Toga, 2009 ), either via multi-site studies or data-sharing initia-
ives. Combining data from multiple sites presents an unavoidable chal-
enge in the form of scanner-induced inter-site variability due to differ-
nces in field strength, imaging parameters, image reconstruction, or
canner manufacturer ( Glover et al., 2012 ) and can lead to systematic
onfounds in time-series data. In one recent example ( Friedman et al.,
008 ), between-site reliability showed median intra-class correlation of
ust r = 0.22. 

In summary, efforts to make the application of resting-state fMRI
linically useful must necessarily address SNR from the perspective of
ot only physiological, but scanner, artifact —and in ways that make
ense given the ubiquity of task-free designs. While efforts to mitigate
hysiological artifact can and have benefited from external measure-
ents ( Caballero-Gaudes and Reynolds, 2017 ), until recently such a

trategy has not been available for scanner artifact. Static phantoms op-
imize purely for general stability ( Friedman and Glover, 2006 ), thereby
uppressing the fluctuations responsible for resting-state signal. More-
ver, the brain (non-static but, by definition, the unknown variable) like-
ise cannot serve as a calibration device. Finally, physics-based models

annot, in principle, approximate the impact of complex nonstation-
ry distortion on time-series without empirical measurement of that
istortion. To address these issues, we approached the problem from
he perspective of creating a “brain-like ” calibration device, capable
f producing a dynamic ground-truth input signal similar to a typical
esting-state time-series. Because such a device would provide a ground
ruth for both fluctuations of interest (signal) as well as fluctuations of
uisance (noise), it could permit optimization for signal-to-noise, rather
han simply stability. Because of the consequent ability to obtain, and
herefore compare, time-series distortion between true and measured
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ime-series, we could develop a purely data-driven —rather than mod-
led —distortion correction. Doing so would potentially permit cleaning
ata of scanner-induced artifact while remaining agnostic with respect
o the diversity of known and unknown sources of distortion and their
ehavior over time. 

. Results 

.1. We designed and engineered a commercial-grade dynamic phantom 

apable of producing brain-like dynamic signals. 

Our previous work ( R ǎdulescu and Mujica-Parodi, 2014 ; Mujica-
arodi et al., 2017 ) and those of others ( Ciuciu et al., 2012 ) shows
hat healthy resting-state fMRI signals follow 1/f (pink noise) frequency
pectra; therefore, our pseudo-brain “input ” signal was engineered to
chieve equivalent dynamics (custom dynamics can also be easily pro-
rammed). To create a dynamic signal, our phantom ( Fig. 1 A) uses dif-
erence in agarose gel concentration across voxels; the phantom, when
otated in-plane across a voxel during the data acquisition, produces a
hanging T 2 

∗ signal. Rotations occur at the start of each TR of a scan
nd are limited to around 250 milliseconds. 

The phantom consists of three distinct parts: a) an agarose gel cylin-
er assembly, having two concentric cylinders; b) a control unit provid-
ng control logic for rotation of the inner cylinder; and, c) an air motor
ssembly with a gearbox and an optical encoder for position tracking.
ithin the agarose gel cylinder assembly, the inner cylinder rotates dur-

ng the scan and is coupled to the air motor and the optical encoder,
hile the outer cylinder contains a reference gel and remains static.
he outer cylinder’s reference agarose gel is made at 2.2% concentra-
ion by weight, whereas the inner cylinder contains two different gel
oncentrations at 2.2% and 2.3% by weight, split into four quadrants in
 configuration as shown in Fig. 1 B. Within each quadrant, a variation
n T 2 

∗ values exist across voxels because of imperfect agarose network
ormation, chemical heterogeneity, and polydispersity of gel networks
 Djabourov et al., 1989 ). The control unit for driving the phantom uses
 feedback control strategy with control logic implemented in PSoC mi-
rocontroller, feedback sensing via an optical encoder, and actuation
hrough solenoid valves. The control unit contains some other custom
ircuitry for fast valve response time (spike-up voltage circuit), touch-
creen user-interface running on raspberry-pi, and UART communica-
ion between the raspberry-pi and the PSoC microcontroller. The phan-
om is MR-compatible (agarose gel cylinder assembly and air motor as-
embly) and uses polycarbonate (body), delrin (air motor), glass-nylon
ball bearings), and G11 garolite (motor shaft) in construction. The con-
rol unit containing electronics and pneumatic compressor for driving
he air motor stays outside in the MR control room. 

.2. Using ground truth brain-like dynamic signals, we quantified a 

tandardized Signal-to-Noise Ratio (ST-SNR) and Dynamic Fidelity; these 

emonstrated wide variance across scanners, even for the “best case 

cenario ” of high-performance scanners utilizing acquisition parameters 

ndividually optimized by a highly experienced MR physicist. 

While the definition of signal-to-noise ratio (SNR) is well defined
cross the engineering domain, use of the term within the fMRI field
as colloquially co-opted its definition in ways that can dilute its mean-
ng and utility. Currently in fMRI, multiple definitions and variants for
omputing SNR exist ( Welvaert and Rosseel, 2013 ), leading to diffi-
ulty in interpreting and comparing SNR values. Normally used to op-
imize for scanner stability with the use of a static phantom, temporal

NR (tSNR) is defined as the ratio of mean signal to standard deviation
f a time-series. However, for reasons described above, optimizing for
SNR (i.e., solely for stability) will suppress not only the fluctuations re-
ponsible for noise but also the fluctuations responsible for resting-state
ignal, effectively de-optimizing for detection of resting-state networks
 DeDora et al., 2016 ). Furthermore, mean-signal in tSNR calculation is
ighly dependent on acquisition parameters, making the interpretation
or comparison difficult. For example: tSNR has been reported across
wo orders of magnitude (e.g., between 4.42 and 280 for a recent re-
iew of studies ( Welvaert and Rosseel, 2013 )). To address both issues,
e quantified the accuracy with which fMRI time-series follow the true

ignal using two data-quality metrics: Standardized Signal-to-Noise Ratio

ST-SNR) and Dynamic Fidelity. “ST-SNR ” is defined as the ratio of signal
ower and the background noise power and is calculated accordingly,
here power is the sum of the absolute squares of time-domain sam-
les divided by the time-series length. We define “Dynamic Fidelity ” as
he accuracy with which an MR scanner tracks changes in the input sig-
al and calculate it as the Pearson correlation coefficient between the
round-truth signal and fMRI output. 

The programmed rotation of the dynamic phantom, along with the
ptical encoder feedback, provides a mechanism for rotation control and
ensing. The phantom tracks the programmed rotation at an accuracy of
.2°. With the rotation generating voxel-wise time-series, the feedback
ensing provides data on the actual rotation that occurs. This feedback
ata enables calculation of the ground-truth time-series and the noise
stimate for each voxel, as shown in Fig. 2 , for quantifying ST-SNR and
ynamic Fidelity. In Table 1 , we show both ST-SNR and Dynamic Fi-
elity for four scanners, showing the potential for wide variance across
canners, even for a “best case scenario ” of high-performance scanners
tilizing acquisition parameters individually optimized by a highly ex-
erienced MR physicist. Importantly for multi-site or longitudinal ap-
lications, these two metrics (ST-SNR and Dynamic Fidelity) provide a
irect assessment and comparison of data-quality over different scan-
ers, as well as the same scanner over time. As ST-SNR and Dynamic
idelity have standardized and interpretable range of values, the direct
omparison of these metrics longitudinally or across scanners becomes
ossible. For example, for the same make and model of a scanner (the
wo Siemens PRISMA scanners, described in Table 1 ) having equivalent
oxel-size, the ST-SNR observed is markedly different. Inspecting fur-
her, while one may attribute this difference to the different head-coil
rrays used between the two scanners ( Table 3 ), the comparison of ST-
NR with 3T SKYRA ( Table 1 ) at the same site with equivalent voxel-size
nd head-coil suggests otherwise: that the Site 2 PRISMA scanner is an
utlier. 

.3. Using the dynamic phantom generated ground-truth, we quantified the 

atio of scanner instability to background noise in fMRI time-series, thereby 

dentifying multiplicative versus thermal noise components. 

We analyzed time-series of the noise (residual time-series as cal-
ulated above, refer to Fig. 2 ), using power spectral density plots, to
dentify spectral-features arising from scanner artifacts. Fig. 3 illustrates
he mean power spectral density across all voxels for the ground-truth
nd the estimated noise time-series. Each voxel time-series’ power spec-
ral density was normalized by its maximum power before calculating
ean at each frequency bin across all voxels. The power spectral density

f the noise closely matches that of the ground-truth signal, indicating
he presence of a multiplicative noise (scanner instability) component
longside thermal/background noise. 

Multiplicative noise modulates the MR signal, is known to exhibit
ome temporal and spatial correlation ( Greve et al., 2013 ), and cannot
e removed using smoothing or frequency-based temporal filtering. The
resence of multiplicative noise diminishes the advantages offered by
ardware improvements (increase in signal to thermal noise ratio with
igher field strength and more sensitive head-coil arrays) and can exac-
rbate the false-positives problem ( Eklund et al., 2016 ), alongside spu-
ious correlations and poor reproducibility of functional connectivity.
and-limited programmed rotation of our phantom produces a band-

imited ground-truth signal, and thus the associated multiplicative noise
an be directly observed in this narrow band —see Fig. 3 (in the 0–0.1
z range). At frequencies higher than 0.1 Hz where the ground-truth

ignal is absent, scanner noise shows a flat spectrum or white-noise be-
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Fig. 1. A. Isometric view of the Dynamic Phantom . The cylindrical head is the agarose gel cylinder assembly, which is coupled to a pneumatic motor and an 
optical encoder on the other end. All components remain intact via fastening to an outer frame and go inside the MR scanner with the cylindrical head placed 
inside the head-coil. The black box shown is the control unit, which interfaces with the optical encoder, pneumatic input from an air compressor and the pneumatic 
motor. B. Distribution of T2 ∗ values across voxels in four quadrants at 3T (Site 1). The agarose gel is prepared using the recipe provided by Friedman et al. 
( Friedman and Glover, 2006 ). Even though the agarose gel is prepared only at 2.2% and 2.3% concentration, the heterogeneity in T 2 

∗ values can be attributed to 
imperfect agarose network formation, chemical heterogeneity, and polydispersity of gel networks( Djabourov et al., 1989 ). C. Feedback control system for rotating 

the inner cylinder . At each trigger from the MR scanner, the PSoC controller compares the current position F(t) with the programmed target position R(t) and 
opens the solenoid valve proportionally to the magnitude of the error signal E(t) to actuate the pneumatic motor. Here, U(t) is the actuating signal, and M(t) is the 
manipulated variable. The system uses no braking mechanism, and accurate positioning is achieved through a predetermined linear relationship established between 
open-state time for solenoid valve and the corresponding rotation achieved at a given pneumatic pressure. 
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avior (thermal noise). This multiplicative noise behavior is further cor-
oborated by a linear scaling of noise power (logarithmic scale) with
n increase in signal (ground-truth) standard deviation. We observed a
oderate correlation between noise power and signal standard devia-

ion for all scanners (Site 1: PRISMA– r = 0.35, Site 2: PRISMA– r = 0.32,
KYRA– r = 0.33, and MAGNETOM– r = 0.35). 

Using the ground-truth dynamic signal and the measured fMRI out-
ut, we quantified the ratio of multiplicative noise (scanner instability)
o thermal/background noise using a probabilistic description of the two
oise-sources. Scanner instability is signal-dependent and thus propor-
ional to the signal intensity, while thermal noise is independent of the
R signal. Background noise and scanner-instability are temporally in-
ependent, and therefore, their variances add. With 𝜎𝑇 as the standard
eviation of the thermal noise and 𝛽 as the proportionality constant for
he multiplicative noise, we can write: 
2 
𝑓𝑀𝑅𝐼 

= 𝜎2 
𝐺𝑇 

+ 𝜎2 
𝑇 
+ 𝛽2 𝜎2 

𝐺𝑇 
= 𝜎2 

𝐺𝑇 
+ 𝜎2 

𝑛𝑜𝑖𝑠𝑒 
, (1)

here 𝜎2 
𝑓𝑀𝑅𝐼 

and 𝜎2 
𝐺𝑇 

, are the variances of the observed fMRI output
nd the ground-truth, respectively. The model for the probability of ob-
erving the measured signal, given ground-truth Y GT and noise param-
ters can then be written as: 

 

(
𝑌 𝑓𝑀𝑅𝐼 𝑌 𝐺𝑇 , 𝜎𝑇 , 𝛽

)
= 𝑁 

(
𝜇 = 𝑌 𝐺𝑇 , 𝜎

2 = 𝜎2 
𝑇 
+ 𝛽2 𝑌 2 

𝐺𝑇 

)
, (2)
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Fig. 2. Creating ground-truth using the Dynamic Phantom. During each phantom scan, 200 static volumes were acquired and were averaged voxel-wise to obtain 
a close approximation to true intensity values. The mean volume was then rotated 600 times synthetically at angles obtained from the optical encoder during the 
actual run. This yielded ground-truth volumes, which then were compared to the volumes acquired during the scan. 

Fig. 3. Qualitative comparison of mean power spectral density of the ground- 
truth and noise time-series provides signatures for the presence of signal- 
dependent (non-white) scanner confounds in fMRI data, in addition to the back- 
ground noise. Voxel-wise noise time-series is calculated by subtracting measured 
fMRI time-series and the ground-truth time-series. 

 

u  

p  

s  

m  

s  

s  

c  

t  

G  

b  

s  

i  

i  

m  

m  

(  

r  

b  

e  

v

2

s

 

t  

(  

o  

s  

e  

t  

l  

S  

n  

n  

h  

n

2

e

n

c

 

r  
We estimate the parameters 𝜎𝑇 , and 𝛽 by Monte-Carlo simulation
sing Y fMRI and Y GT . Specifically, we model Eq. 1 to sample from the
osterior distribution that is proportional to Eq. 2 while assuming con-
tant priors for the parameter distributions. The relative contribution of
ultiplicative noise to that of the total noise is listed in Table 1 for each

canner. The results indicate that even in modern high-performance
canners with acquisition parameters optimized by a trained MR physi-
ist, the scanner-induced variance due to instability is around 6–18% of
he contribution of the total scanner noise. This range is consistent with
reve et al. (2011 ), in which the authors measured scanner instability
y scanning an agar phantom at two varying flip-angles to separate in-
tability from background noise. Because we use different metrics, we
ncluded a detailed comparison between the Greve et al. (2011 ) find-
ngs (Supplementary Material, Table 1 ) and our study in the Supple-
entary Material. Finally, we provide a case-study comparing the two
ethods, using modern imaging hardware and acquisition parameters

multi-channel coils and parallel imaging) in the Supplementary Mate-
ial. We found agreement between the two methods, except when the
ackground noise variance becomes space-variant. This suggests Greve
t al.’s method risks inaccuracy for modern acquisition protocols, as pre-
iously discussed in Greve et al. 

.4. Using the dynamic phantom generated ground-truth, we quantified 

canner-induced non-linearity in fMRI response. 

Finally, we observe scanner-induced temporal non-linear distor-
ion of fMRI response using a tree-partition non-linearity estimator
 Ljung, 2019 ) (a piece-wise linear function defined by the binary tree
ver partitions of the regressor space) with ground-truth as the regres-
or. Non-linearity is detected in the observed fMRI data if a nonlin-
ar function explains significant variance in the observed data beyond
he variance explained by the linear function of the ground-truth. Non-
inearity estimation was performed using ‘isnlarx’ function provided in
ystem Identification Toolbox, Matlab ( Ljung, 2019 ), which categorizes
on-linearity as strong, weak or not significant based on reliability of the
onlinearity detection test. We observed that the 7T scanner showed the
ighest non-linearity in response, with 19% of voxels exhibiting strong
on-linearity ( Table 1 ). 

.5. Using the dynamic phantom generated ground-truth, we evaluated the 

fficacy of applying random matrix theory to remove scanner-induced 

oise; thereby, demonstrating the utility of the dynamic phantom for 

omparing retrospective denoising techniques against a ground-truth. 

A method based on principal component analysis (PCA) coupled with
andom matrix theory (RMT), called MP-PCA) ( Veraart et al., 2016a,b ),
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as been introduced recently for denoising diffusion MRI) ( Veraart et al.,
016a,b ) and fMRI data ( Adhikari et al., 2018 ). MP-PCA is a 4d im-
ge denoising technique that exploits redundancy in the PCA domain
sing the universal Marchenko–Pastur distribution to remove scanner-
nduced noise. MP-PCA denoising, followed by bandpass filtering in the
requency-band of interest (0.008-0.1Hz), showed increases in ST-SNR
nd Dynamic Fidelity over the observed fMRI data and the conventional
andpass filtering (0.008-0.1Hz). MP-PCA denoising showed a signif-
cant increase in Dynamic Fidelity with around 40%, 60%, 48%, and
5% increase and a ~2- to 3-fold increase in ST-SNR, for Site 1: PRISMA,
ite 2: PRISMA, SKYRA, and MAGNETOM respectively, compared to the
bserved fMRI data. 

.6. We designed a data-driven temporal filter and observed robust 

ncreases in ST-SNR and Dynamic Fidelity of fMRI time-series after 

enoising. 

We provide a deep-learning framework using a Convolutional Neu-
al Network (CNN) for learning an equivalent of a temporal filter. Given
hat we now have known dynamic inputs, we developed an end-to-
nd trainable CNN architecture that uses discriminative denoising to
emove noise in the hidden layers. We provided pairs of measured fMRI
ime-series and known signal to learn a mapping from noisy to clean
ime-series implicitly. We used batch regularization with small batches
f batch-size = 8 within CNN to avoid internal covariate shift, acceler-
te the training process, and reduce dependence on network parame-
er initialization ( Sergey Ioffe, 2015 ). Sigmoid activation function has
een used for non-linear mapping and a dropout layer for regularization
 Nitish Srivastava, 2014 ). The architecture details of CNN are specified
n Fig. 4 . 

For evaluating the performance and generalizability of the CNN,
e compare the results of CNN denoised fMRI time-series, as shown

n Fig. 5 , with the original data-quality and temporal de-noising us-
ng a standard third-order Butterworth bandpass filter (0.008–0.1 Hz).
NN de-noising showed a significant increase in Dynamic Fidelity with
round 53%, 72%, 58%, and 38% increase, for Site 1: PRISMA, Site
: PRISMA, SKYRA, and MAGNETOM respectively, compared to the
bserved fMRI data. Further, the CNN de-noising showed a ~4- to 7-
old increase in ST-SNR compared to the observed fMRI data. Finally,
NN de-noising outperforms the conventional temporal bandpass filter-

ng and the MP-PCA denoising ( Table 1 ) in terms of improving both the
T-SNR and the Dynamic Fidelity. While optimal denoising requires col-
ecting both the training and test data during the same session as shown
n Table 1 , the CNN denoising shows improvement in both ST-SNR and
ynamic Fidelity even with training datasets acquired a few weeks apart

rom the test dataset (Supplementary Material, Table 4). 

.7. Removing scanner-induced variance from human fMRI data increased 

he detection sensitivity of brain networks, visible even at the single-subject 

evel. 

For assessing the effects of CNN de-noising on human fMRI data,
he detection sensitivity of brain networks engaged in movie watch-
ng was calculated as a measure of the ability to preserve fluctuations
f interest (signal) while removing scanner confounds (noise) from the
ime-series, and was quantified using the ratio of mean absolute Z-score
nside and outside well-defined resting-state network masks in subject-
pecific ICA maps. A ratio > 1 indicates that Z-score inside the mask
s higher compared to voxels outside. Higher this ratio, the easier it is
o detect the brain/resting-state networks. We observed an increase in
etection sensitivity at the single-subject level for all three scanners af-
er accounting for scanner-related noise, for both the MP-PCA denoising
nd the CNN denoising method. For MP-PCA denoising, permutation-
esting revealed a significant increase in detection sensitivity for all
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Fig. 4. Architecture of the convolutional neural network used for discriminative denoising. Each convolution layer (except the last) contains 18 filters with 
a kernel size of 9 and a stride of 1. Sigmoid is used as the activation function. A dropout of 0.2 is used in the dropout layer. The last convolution layer contains only 
one filter. Negative of R-squared between the ground-truth and the denoised time-series used as the loss function (minimize) with Adam optimizer for stochastic 
optimization (Diederik P. Kingma and Ba 2014 ). 

Fig. 5. Exemplar denoising of fMRI output using the trained CNN for two voxels with A. low ST-SNR (0.06), and B. high ST-SNR (0.31) levels. 
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hree scanners (3T PRISMA: percent-change = 9.06% p-value = 0.016;
T SKYRA: percent-change = 13.03%, p-value = 0.016; 7T MAGNE-
OM: percent-change = 9.3%, p-value = 0.015). Similar trends were ob-
erved for CNN denoising (3T PRISMA: percent-change = 13.63% p-
alue = 0.016; 3T SKYRA: percent-change = 20.7%, p-value = 0.015; 7T
AGNETOM: percent-change = 18.74%, p-value = 0.015). Furthermore,

he CNN denoising outperformed MP-PCA denoising as evident from
able 2 (3T PRISMA: percent-difference = 4.19% p-value = 0.016; 3T
KYRA: percent-difference = 6.78%, p-value = 0.03; 7T MAGNETOM:
ercent-difference = 8.64%, p-value = 0.015). 
. Discussion 

.1. Why should one use a dynamic phantom rather than a static phantom?

Static phantoms are commonly used for quality assurance
 Friedman and Glover, 2006 ) to assess and minimize scanner fluctua-
ions due to background noise and instability. However, the resting-state
MRI or naturalistic paradigms depend not only upon suppressing fluc-
uations due to noise but equally upon sensitivity towards signal change,
hich can only be assessed by a phantom that produces a known and
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(  
hanging (dynamic) signal. The importance of a dynamic phantom is
hat it is the only method, to our knowledge, that can quantifiably as-
ess the most basic assumption underlying all task-free fMRI: fidelity be-
ween input (brain) dynamics and output (measured fMRI time-series)
ynamics. We introduced a novel method for generating ground-truth
sing the dynamic phantom and estimating voxel-wise noise time-series.
he dynamic phantom additionally provides an estimate of standard-

zed signal-to-noise ratio (ST-SNR) and non-linearity, quantifying actual
easurement error in fMRI response as compared to static-phantom de-

ived temporal stability of the mean signal (tSNR). While static phan-
oms estimate only flat-spectrum noise ( Expert et al., 2011 ), the dynamic
hantom can detect both signal-dependent and background noise. Us-
ng Bayesian parameter estimation, we quantified the ratio of instabil-
ty/multiplicative noise to the background noise. Although fMRI time-
eries have several sources of confounds and variance contributed by
canner-instability is relatively small, the reliability of the longitudinal
ata may be seriously affected without proper characterization. Using
ata metrics introduced, quality assurance protocols can be established
or scanner health monitoring. Any deviations in ST-SNR, Dynamic Fi-
elity or scanner-instability, compared against longitudinally tracked
easurements, would indicate scanner problems. 

.2. Why did we use a deep-learning approach for temporal denoising? 

Scanner-instability and background noise in resting-state data lead
o decreased detection-sensitivity of resting-state networks, which have
een typically addressed by increasing the amount of data collected
r increasing the scan-time per subject. These methods are not only
xpensive but lead to other problems such as subject-fatigue and in-
reased head-motion, which are especially acute in clinical populations.
n the current report, we propose a fundamentally different approach
or removing scanner confounds from fMRI time-series, which may cir-
umvent the need for collecting more data, and which is ideally suited
or single-subject level analyses required for clinical and computational
odeling applications, as well as large-scale multi-site and longitudinal

tudies. Our method exploits the availability of paired measured fMRI
nd ground-truth data to perform discriminative denoising using CNN.
eveloping a denoising algorithm for correcting time-series distortions
an be framed as a system-identification problem, wherein the goal is to
nfer a functional relationship between the system input (measured fMRI
ata) and the system output (denoised fMRI data). Convolution of the
easured signal with the identified filter produces the denoised signal.
hile dealing with linear systems, this system-identification problem re-

uces to the characterization of impulse response using delta function or
bserving the system’s frequency response using sinusoids. However, for
on-linear systems, there exists no canonical representation of the sys-
em that will capture “all possibilities ” of mapping inputs to transformed
utputs. The convolution integral for linear systems can be extended to
onvolution-like Volterra series for non-linear systems, which can fur-
her be extended to Weiner series where each component of the series
s orthogonal to all lower-order components. Lee and Schetzen ( Lee and
chetzen, 1965 ) provided a simple method based on cross-correlation
or estimating Weiner kernels. However, the cross-correlation method
s fundamentally limited by the fact that inputs must be Gaussian. Fur-
her, the kernel estimation suffers in cases of strongly nonlinear systems.
o overcome these problems, we used deep learning for performing tem-
oral filtering. Intuitively, the trained CNN can be thought of as a tem-
oral filter (like a bandpass-filter), but with filter parameters estimated
n an automated data-driven manner optimized for a specific scanner
erforming a session. 

.3. Why is a dynamic phantom more useful than ICA-based techniques in 

itigating scanner-effects for multi-site studies? 

Different sites generally have very different-levels of scanner-noise
 Greve et al., 2011 ), causing heteroscedasticity when using ordinary
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8

east-squares estimator and skewing the p-values to be smaller than
hey should be. Scanner-differences can be reduced by data-processing
echniques before analysis (resting-state data), or scanner-effects can
e adjusted statistically (task-based data). Feis et al. ( Feis et al., 2015 )
ecently showed the successful application of FMRIB’s ICA-based X-
oiseifier (FIX) ( Salimi-Khorshidi et al., 2014 ) to remove scanner-
pecific structured noise components that diminished differences in de-
ected resting-state networks across sites. However, the complexity in
e-training the FIX classifier for a dataset from every new scanner is non-
rivial and requires manual component labeling using data from multi-
le subjects by an expert. While our measurement of ST-SNR provides a
ay for statistical adjustment of scanner effects in task-based paradigm
sing ST-SNR as a covariate in ANCOVA designs, the CNN denoising can
emove scanner-induced effects before analysis for resting-state fMRI or
aturalistic paradigms in an automated fashion. 

.4. Future directions 

Our work has direct implications in moving towards single-subject
maging, which is necessary for clinical purposes as well as for fMRI
riven computational neuroscience. Ensuring the stability of time-series
dds statistical power to draw useful conclusions from a limited amount
f data. Although first-level analysis is dominated by physiological noise
 Greve et al., 2011 ; Triantafyllou et al., 2005 ; Wald and Polimeni, 2017 ),
e observed a ~13–20% increase in detection sensitivity of resting-

tate networks after removal of scanner-related noise. The fact that
he dynamic phantom can provide, for the first time, a ground truth,
ermits identification and removal of scanner-related noise. It also en-
bles rigorous evaluation of new data-driven denoising methods under
real-world ” conditions that may deviate from idealized a priori assump-
ions (i.e., physical models) of scanner noise characteristics. The dy-
amic phantom’s optical encoder provides precise information (resolu-
ion = 0.04392 degrees) about phantom rotation, which can be used
or evaluating both prospective and retrospective in-plane motion cor-
ection algorithms. Using the dynamic phantom for establishing data-
uality metrics, will provide an evaluation of modern imaging protocols,
or example compressed sensing fMRI or 3D EPI. Future studies with a
arger sample-size will focus on the effects of removing scanner con-
ounds on reliability estimates of functional connectivity analysis and
omputational neuroscience circuits. Low reliability causes low repro-
ucibility of functional connectomics ( Zuo et al., 2019 ). Reproducibility
cross sessions while scanning the same patient affects the clinical de-
ision making and thus is an active concern for the use of resting-state
MRI as a clinical tool ( O’Connor and Zeffiro, 2019 ). Further, as phys-
ological noise, thermal noise, and scanner instability are temporally
ndependent, the effect of physiological noise and scanner-induced fluc-
uations can be regressed out using a general linear model (GLM) frame-
ork. The second-order effects/interaction between physiological noise
nd scanner-induced fluctuations can easily be modeled using interac-
ion terms in the GLM if external physiological recordings are available.
he CNN output (denoised fMRI signal) and input (measured fMRI sig-
al) can be used to obtain the regressors (subtracting denoised fMRI sig-
al from the measured fMRI signal) for scanner-induced fluctuations, to
odel the interaction effects. Additionally, future directions include in-

estigating effects of dynamic phantom estimated ST-SNR on activation
ffect size in task-based studies, combining multi-site task-based studies
sing ST-SNR as a covariate, and using CNN denoising to normalize data
cross sites as required for multi-site studies. 

. Methods 

.1. Study design 

We performed imaging at two sites: the SCAN Center at Stony Brook
niversity in Stony Brook, New York (Site 1) and the Athinoula A. Marti-
os Center for Biomedical Imaging at the Massachusetts General Hospi-
al in Charlestown, Massachusetts (Site 2). We designed and engineered
 dynamic phantom for producing ground-truth time series, based on
ifferences in T 2 

∗ values of agarose gel across voxels of interest. Con-
rolled rotation of the dynamic phantom produces variation in the T 2 

∗ 

alues within a voxel, tuned to generate amplitude changes/signal as
bserved with BOLD contrast in humans (see Results for a detailed de-
cription of the design). At Site 1 (3T Siemens PRISMA scanner), we
canned the phantom during a single session with five acquisition runs,
ith each successive run separated by a 20-minute interval. Each run
ad a unique programmed rotation profile as input to the phantom. No
uman data acquisition occurred at Site 1. At Site 2, we acquired data
rom three human subjects (two males and one female aged 55, 56,
nd 47 years, respectively) and the phantom, using three scanners: 3T
iemens SKYRA, 3T Siemens PRISMA, and 7T Siemens MAGNETOM. We
cquired data in three imaging sessions: one session per scanner. Dur-
ng each imaging session, we acquired three phantom scans, each with
 unique rotation profile, and six human scans, with two scans per sub-
ect. The first phantom scan took place at the beginning of each session.
ext, each of the three human subjects were scanned while they viewed
 naturalistic movie (no audio, see Supplementary Material for video)
nside the scanner. Afterward, we acquired the second phantom scan,
ollowed by a repeated acquisition for all three human subjects under
dentical conditions. Finally, we acquired the third phantom scan. The
nstitutional Review Board at Massachusetts General Hospital (Partner’s
ealthcare) provided approval for the human study, and all participants
rovided written informed consent prior to participating in the study. 

.2. Data acquisition parameters 

To ensure that results conservatively reflect actual data-quality met-
ics within the neuroimaging field, we asked each scanner’s MR physi-
ist to independently provide the optimal acquisition parameters for
odern fMRI studies conducted on that specific scanner. The details

f the protocol parameters are as follows. (1) Site 1 (phantom imaging
nly): The phantom was scanned on a 3T Siemens PRISMA scanner with
 64-channel head coil. For relaxation rate measurements, multi-echo
radient-echo images were acquired at twelve echo times equally spaced
etween 5 ms and 60 ms with TR = 70 ms, FOV = 192 mm × 192 mm,
ip angle = 20°, slice thickness = 1.5 mm, and readout bandwidth = 320
z/px. For the time-series data, standard single-shot gradient-echo EPI
ata were acquired with the parameters as listed in Table 3 . (2) Site 2:
hree different scanners were used for data acquisition. For phantom
easurement, only EPI scans were acquired. For human measurements,

tructural scans based on a standard T 1 -weighted MPRAGE and B 0 field
aps were acquired in addition to the EPI scans. EPI scan parameters for

ll three scanners are listed in Table 3 . Specifics of structural scans and
 0 field maps are: (a) 3T Siemens SKYRA: Structural scans, for spatial co-
egistration, were acquired as multi-echo MPRAGE with 1 mm isotropic
oxel size and four echoes with TE 1 , TE 2 , TE 3 , TE 4 = 1.69, 3.55, 5.41,
.27 ms, TR = 2530 ms, flip angle = 7°, and GRAPPA acceleration = 2. B 0 

eld map images, calculated using phase differences between gradient-
cho images at TE = 3.47 ms and 5.93 ms, were acquired (TR = 500
s, flip angle = 47°, voxel-size = 3.0 × 3.0 × 3.0 mm 

3 and 44 slices) for
PI distortion correction arising due to susceptibility-induced magnetic
eld inhomogeneity; (b) 3T Siemens PRISMA: Structural scans were ac-
uired using a single-echo MPRAGE with 1 mm isotropic voxel size, TE =
.9 ms, TR = 2500 ms, flip angle = 8° and GRAPPA acceleration = 2. B 0 

eld maps were acquired with TE = 3.47 and 5.93 ms, TR = 500 ms, flip-
ngle = 47°, voxel-size = 3 × 3 × 3 mm and 52 slices; (c) 7T Siemens MA-
ENETOM: Structural scans were acquired as multi-echo MPRAGE with
 mm isotropic voxel size at four echoes with TE 1 , TE 2 , TE 3 , TE 4 = 1.61,
.47, 5.33, 7.19 ms, TR = 2530 ms, flip angle = 7°, and GRAPPA accel-
ration = 2. B 0 field map images were acquired at TE = 4.60 and 5.62
s, TR = 723 ms, flip angle = 47°, voxel-size = 1.7 × 1.7 × 1.5 mm 

3 and
9 slices. 
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Table 3 

Acquisition parameters for functional EPI datasets for both the phantom and human subjects. ∗ Only 600 volumes 
acquired in the case of human subjects. 

Parameter Site 1 Site 2 

Scanner Siemens PRISMA Siemens PRISMA Siemens SKYRA Siemens MAGNETOM 

B0 Field 3T 3T 3T 7T 

Head Coil 64 32 32 32 

TR (msec) 1000 800 748 802 

TE (msec) 33 30 31 20 

Flip Angle (degrees) 52 52 52 33 

EPI Factor 84 90 80 96 

Voxel Size 2.5mm Isotropic 2.4mm Isotropic 2.5mm Isotropic 2 mm x 2mm x 1.5mm 

Number of Slices 28 60 48 85 

Number of Volumes ∗ 800/600 800/600 800/600 800/600 

Echo-Spacing 0.58 0.51 0.59 0.55 

iPAT 1 1 1 2 

Multiband Factor 4 6 6 5 

Bandwidth (Hz/Px) 2990 2778 2232 2368 
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.3. Preprocessing of phantom data for calculating data quality metrics 

nd training the convolutional neural network (CNN) 

Acquisition of phantom EPI data involved acquiring the first 200
olumes without any programmed rotation, followed by 600 rotating
olumes with the rotation synchronized to the scanner’s TR (repetition
ime) trigger signal. The phantom rotation was limited to around 250 ms
rom the start of each TR and was quantified using the optical encoder’s
eedback ( Fig. 1 A, C). Before analysis, we corrected all phantom acqui-
itions for smooth spatial intensity variations caused by nonuniformity
n the B0 field, B1 + field, and receiver coil sensitivity ( Sled et al., 1998;
led and Bruce Pike, 1998 ) using the N4ITK algorithm ( Tustison et al.,
010 ), implemented in ANTs toolbox. N4ITK offers improved bias field
orrection over the original nonuniform intensity normalization (N3)
lgorithm ( Sled et al., 1998 ), via robust b-spline approximation and a
ierarchical optimizer to model a range of bias modulation. Addition-
lly, to further minimize the effect of spatial intensity variations for cal-
ulating ground truth ( Fig. 2 ), we limit the phantom rotation within 10
egrees clockwise or anti-clockwise relative to the start position at time,
 = 0. Based on the optical encoder’s feedback and scanner’s slice timing
nformation, all the slices acquired during in-plane rotation within a TR
ere discarded from the respective EPI dataset for any further analy-

is. The remaining slices were manually inspected, and bad slices due to
usceptibility artifacts (towards the top and bottom face of the cylinder)
ere thrown out. The final set of slices then underwent an automated
rocedure based on contour finding and the Hough transform for gen-
rating masks used to select the voxels of interest located in the inner
ylinder of each slice. The first 200 volumes of all the remaining slices
ere averaged voxel-wise to create a mean functional dataset to obtain

lose approximations to the true voxel intensity. Synthetic rotation of
he mean functional dataset, to create ground-truth time-series, involved
p-sampling the mean images by a factor of 5 (3rd order spline inter-
olation), followed by rotation at angles provided by optical encoder’s
eedback and down-sampling by local averaging to original dimensions
f the mean functional slice. Fig. 5 (Supplementary Material) shows that
he ground truth signal created using acquisitions at different static po-
itions closely match each other. Subtracting the noisy fMRI output from
he corresponding ground-truth time-series yields voxel-wise noise time-
eries. Power spectrum density ( Fig. 3 ) was calculated using the Welch
ethod implemented in SciPy library ( Virtanen et al., 2020 ). Monte-
arlo simulations for parameter estimation to quantify multiplicative-
o-thermal noise ratio were carried out in PyMC3 ( Salvatier et al., 2016 ).

e estimated the percentage of voxels exhibiting nonlinearity for each
canner. For a given voxel with ground-truth time series G(t) and a mea-
ured fMRI time series Y(t), we express the measured fMRI time series
s 

 ( t ) = L ( t ) + F ( t ) + E ( t ) 
here L(t) represents the portion of data explained by a linear func-
ion of the ground-truth time series, F(t) represents the portion of data
xplained by a nonlinear function of the ground-truth time series and
(t) represents unexplained residual variance. If the nonlinear function
xplains a significant portion of variance after regressing out the lin-
ar model L(t) from Y(t), a nonlinearity is detected in the time series
(t) ( Ljung et al., 2006 ; Sjöberg et al., 1995 ). F(t) models the nonlin-
arity based on a nonlinear function/estimator ( Sjöberg et al., 1995 ;
jung et al., 2006 ) of the ground-truth time series, which can be a bi-
ary partition tree, a radial basis function network based on wavelets,
 piecewise linear estimator, a multi-layer neural network or custom-
uilt non-linearity regressors (for example, quadratic or polynomial re-
ressors of ground-truth time series). We used a binary tree partition
 Vanli and Kozat, 2014 ; Ljung et al., 2006 ) as nonlinearity estimator,
hich splits the data into two subsets followed by iterative splitting of

ach subset into smaller subsets to partition the entire regressor space
ground-truth time series) into a binary tree. After this, linear regression
s performed at each level of the binary tree to complete the estimation
rocedure ( Vanli and Kozat, 2014 ). We performed the nonlinearity esti-
ation with a binary partition tree using the “isnlarx ” function provided

n System Identification Toolbox, Matlab ( Ljung, 2019 ). 
For all voxels, the measured and the ground-truth time-series pairs

ere used for end-to-end training of the CNN (see Fig. 4 for architec-
ure). Given that multiple phantom scans were acquired for each scan-
er, CNN training involved combining data acquired with different pro-
rammed motion sequences (Supplementary Materials: Suppl. Fig. 2 ) on
 scanner for data-augmentation. Within each training dataset, 33% of
ata was used as validation split and model weights with lowest vali-
ation loss was saved as the trained CNN. For Site 1, three CNNs were
rained using data from scans 1 and 3, scans 2 and 4, and scans 3 and
. For Site 2, three phantom scans were acquired at each scanner, and
NNs were trained using data from scans 1 and 2, scans 2 and 3, and
cans 1 and 3. For testing denoising performance, the test data were
enoised using a trained CNN which did not use the test data during
raining (out-of-sample denoising), for example: at Site 2, for denoising
can 2, we used a CNN trained on scans 1 and 3. 

.4. Preprocessing of human data 

Spatial preprocessing was performed in the Statistical Paramet-
ic Mapping (SPM12) software package ( http://www.fil.ion.ucl.ac.uk/
pm ) using the pipeline provided in the CONN toolbox ( Whitfield-
abrieli and Nieto-Castanon, 2012 ). Functional images were motion

rigid alignment, six-degrees-of-freedom) and B 0 field map corrected,
nd a mean functional image was calculated for each subject. The mean
unctional images were then co-registered to high-resolution structural
mages followed by segmentation to generate gray matter, white mat-
er, and cerebrospinal fluid images. Each voxel time-series was de-

http://www.fil.ion.ucl.ac.uk/spm
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eaned and underwent quadratic de-trending. For further temporal pre-
rocessing, the data went through two different pipelines to generate
hree datasets as discussed below: (a) Standard Method: Physiological
onfounds were removed using the Component-Based Noise Correction
ethod ( Behzadi et al., 2007 ) (CompCor) implemented through Nipype

nterface ( Gorgolewski et al., 2011 ). CompCor regresses out the con-
ounding effects of multiple empirically estimated noise sources calcu-
ated from variability in BOLD time-series of cerebrospinal fluid and
hite matter (based on principal component analysis). Five components
f white matter and cerebrospinal fluid, and six motion parameters,
long with temporal bandpass filtering (0.008–0.1 Hz), were used for
hysiological denoising. Removal of confounds was orthogonal to the
andpass filtering( Lindquist et al., 2019 ); (b) CNN Denoising : Spatially
reprocessed functional data (motion and fieldmap corrected and nor-
alized to MNI) underwent denoising (voxels in gray-matter only) us-

ng trained scanner-specific CNN, followed by physiological confound
emoval as in the standard method (CompCor, motion, and bandpass
ltering); (c) MP-PCA denoising: We repeated the spatial preprocess-

ng of functional data and applied the standard method of temporal
reprocessing, on MP-PCA denoised raw functional data, to generate
 third dataset in addition to the standard method and CNN denoising
atasets. Finally, datasets obtained from all three denoising methods
ere smoothed with a 4-mm full width at half-maximum Gaussian ker-
el, followed by normalization to 2 × 2 × 2 mm Montreal Neurological
nstitute (MNI) EPI template. 

.5. Calculating detection sensitivity of resting-state networks 

To identify functionally connected networks in a data-driven man-
er, we performed group spatial ICA on the preprocessed data us-
ng the GIFT v3.0b fMRI Toolbox ( https://trendscenter.org/software/ ),
eparately for each scanner and temporal processing scheme (stan-
ard method and CNN denoising). For each dataset, 20 independent
omponents were obtained, after ten runs of ICASSO ( Himberg et al.,
004 ) procedure for ensuring component stability. Subject-specific spa-
ial maps and associated time courses were estimated using back-
econstruction (GICA) ( Erhardt et al., 2011 ). We used the Infomax al-
orithm for performing ICA. ICA spatial maps were converted to Z val-
es. We spatially matched the subject-specific ICA maps to seventeen
ell-defined resting-state network templates obtained from Yeo et al.
 Yeo et al., 2011 ), for obtaining each subject’s corresponding network
CA maps. Detection sensitivity was then calculated as the ratio of mean
bsolute Z-score inside and outside of each of the seventeen resting-state
etwork masks applied to the matched subject-specific ICA spatial maps.
he mean of detection sensitivity values, across all seventeen networks,
or each subject, yielded a total of six values (three subjects with two
uns) for every scanner. These six values were compared between the
tandard method, MP-PCA denoising, and the CNN temporal denoising
or each scanner using permutation testing (100,000 repetitions). 
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