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Abstract The medial orbitofrontal cortex has been linked

to the experience of positive affect. Greater medial orbi-

tofrontal cortex volume is associated with greater expres-

sion of positive affect and reduced medial orbital frontal

cortex volume is associated with blunted positive affect.

However, little is known about the experience of euphoria,

or extreme joy, and how this state may relate to variability

in medial orbitofrontal cortex structure. To test the

hypothesis that variability in euphoric experience corre-

lates with the volume of the medial orbitofrontal cortex, we

measured individuals’ (N = 31) level of self-reported

euphoria in response to a highly anticipated first time

skydive and measured orbitofrontal cortical volumes with

structural magnetic resonance imaging. Skydiving elicited

a large increase in self-reported euphoria. Participants’

euphoric experience was predicted by the volume of their

left medial orbitofrontal cortex such that, the greater the

volume, the greater the euphoria. Further analyses indi-

cated that the left medial orbitofrontal cortex and amyg-

dalo-hippocampal complex independently explain

variability in euphoric experience and that medial orbito-

frontal cortex volume, in conjunction with other structures

within the mOFC-centered corticolimbic circuit, can be

used to predict individuals’ euphoric experience.

Keywords Skydive � Euphoria � Medial prefrontal

cortex � Reward � Hedonia

Introduction

A quintessential characteristic of being human is the sub-

jective experience or ‘feeling’ that accompanies the emo-

tional response to positive and negative life events.

Although for many individuals positive affect is com-

monplace in daily life, there appears to be variability from

individual-to-individual in their capacity to experience joy.

At one end of the spectrum, anhedonia or diminished

pleasure is a primary symptom of major depressive disor-

der (MDD) and a negative symptom of schizophrenia (Der-

Avakian and Markou 2012; Millan et al. 2014; Kring and

Barch 2014). Individuals with anhedonia find it difficult to

take pleasure in enjoyable life experiences. However, even

in individuals where positive affect is a common occur-

rence, the extreme state of euphoria is seldom experienced.

Not surprisingly, very little is known about the neural

mechanism(s) associated with variability in emotional

experience at the upper end of hedonic capacity.

In the brain, the orbitofrontal cortex (OFC) is associated

with reward processing across a number of dimensions

including the subjective pleasantness experienced upon
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reward attainment (Kringelbach et al. 2003; Nitschke et al.

2003). Meta-analytical evidence suggests that the medial

OFC (mOFC) in particular activates in response to a variety

of pleasant or rewarding stimuli, whereas the lateral OFC is

more responsive to negatively valenced stimuli (Kringel-

bach and Rolls 2004). Research has shown that greater

expression of positive emotion is linked to larger medial,

but not lateral, OFC volumes (Welborn et al. 2009). On the

other hand, disorders associated with blunted affect have

been linked to reduced mOFC volume. Evidence from

postmortem studies (Rajkowska 2000), large scale volu-

metric studies (Grieve et al. 2013), literature reviews

(Lorenzetti et al. 2009), and meta-analyses (Koolschijn

et al. 2009; Kempton et al. 2011) suggest that at a group-

level MDD is associated with decreased volume of the

mOFC (among other areas). Similarly, at a group-level,

patients with schizophrenia have reduced mOFC volumes

(Liao et al. 2015; Baare et al. 1999; Gur et al. 2000) and

severity of anhedonia is inversely correlated with mOFC

activity in schizophrenia (Harvey et al. 2010). Furthermore,

youth at risk for familial schizophrenia have reduced mOFC

volumes and the extent of this volume reduction correlates

with symptoms of anhedonia (Rosso et al. 2010). Collec-

tively, these findings suggest that the mOFC is associated

with neuro-typical reward processing and reduced mOFC

volume is linked to disorders characterized by blunted

positive affect. It is, therefore, possible that variability in

mOFC volume might also be associated with differences in

the ability to experience euphoria. However, this possibility

remains untested.

Research into the neural correlates of euphoric experi-

ence has been limited by the fact that it is hard to produce

true states of euphoria in laboratory settings. A small number

of studies on drug induced euphoria (e.g., Drevets et al.

2001; Breiter et al. 1997) have linked this state to increased

activity in the nucleus accumbens. Yet, very little is known

about the neural correlates of endogenously produced states

of euphoric experience and the potential relationship

between brain structure and variability in euphoric experi-

ence. Anticipation of skydiving has previously been used as

an effective probe of real-world stress reactivity (Chatterton

et al. 1997; Dikecligil and Mujica-Parodi 2010; DeDora

et al. 2011; Mujica-Parodi et al. 2014). Yet, experiencing a

first-time skydive is an activity that most individuals—that

freely volunteer to skydive—find extremely enjoyable.

Indeed, prior research has shown that people are most anx-

ious/stressed during the anticipatory period leading up to the

jump and upon landing are extremely euphoric (Carlson

et al. 2012). Thus, the period immediately following a sky-

dive provides a unique opportunity to probe individuals’

states of extreme euphoria.

In this study, to elicit a strong euphoric experience we

went outside the laboratory to measure participants’

reactions to a first-time skydive. In addition to measuring

participants’ feelings of euphoria in response to skydiving,

we measured medial and lateral OFC volumes with struc-

tural magnetic resonance imaging. We hypothesized that

individuals experiencing the greatest levels of euphoria

while skydiving would be those with the largest mOFC

volumes. In addition to the OFC, the nucleus accumbens

(NAcc) is linked to a variety of reward-related processes

from reward seeking and anticipation (Knutson et al.

2001a, b; O’Doherty et al. 2002; Greenberg et al. 2014) to

reward valuation and attainment (Bartra et al. 2013). Thus,

we conducted additional analyses to assess the relationship

between euphoric experience and a broader mOFC-cen-

tered corticolimbic circuit including the nucleus accum-

bens, but also the amygdala and hippocampus, which have

previously been shown to be part of the mOFC network

associated with affective and reward processing (Berridge

and Robinson 2003; Cha et al. 2014; Roy et al. 2012). We

used path analysis to model the relationship between the

volumes of the structures within the mOFC corticolimbic

circuit that subserve euphoric experience, as well as,

multivariate pattern recognition analysis to predict indi-

viduals’ level of euphoric experience based on their ‘‘pat-

tern’’ of brain volumes within the mOFC-centered

corticolimbic circuit.

Method

Participants

We recruited individuals who independently contacted a

local skydiving school (Skydive Long Island, Calverton,

NY) to schedule their first tandem skydive. Thirty-one (13

female) healthy consenting adults (M = 24.23, SD = 6.82,

18–48) participated in the study. The Institutional Review

Board of Stony Brook University approved all aspects of

the study. The individuals and measures included in this

study were part of a larger investigation of individual

variability in physiological stress reactivity.

Procedure

Testing took place over two time-matched days: (1) sky-

dive day and (2) control day. At the airfield, participants

boarded the plane at 10:15 a.m., ascended for 15 min, and

then jumped with a period of freefall lasting 1 min, which

was followed by a 4-min descent under an open parachute.

Landing occurred at 10:35 a.m. On both days participants

were asked to rate their current state of euphoria (e.g., ‘‘I

am euphoric’’ and ‘‘I feel blissful’’; Carlson et al. 2012) and

anxiety on a four-point scale (e.g., ‘‘I am worried’’ and ‘‘I

am tense’’; six-item short-form of the Spielberger state
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anxiety scale; Marteau and Bekker 1992; Spielberger et al.

1970). Euphoria and anxiety levels were collected on the

plane immediately prior to jumping and at the airfield

immediately after landing. Baseline levels of euphoria and

anxiety were collected on the control day at matched time-

points. On the control day, Zuckerman Sensation Seeking

values were also obtained (Zuckerman and Link 1968).

One individual did not fill out this questionnaire. Sensation

seeking scores for the remaining 30 participants ranged

from 16 to 33 (M = 24.77, SD = 4.09) and were used as a

control variable in subsequent analyses. Correlations

between these self-report measures are shown in Supple-

mentary Figure 1).

Magnetic resonance image acquisition

Participants underwent T1-weighted structural magnetic

resonance imaging (sMRI) on the control day. Data were

acquired from two 3-Tesla scanners. A Philips 3T Achieva

whole body scanner with the following high-resolution

MPRAGE sequence was used for the initial 11 scans:

repetition time/echo time ion time (TR/TE) = 8.0/4.3 ms,

flip angle (FA) = 18�, field of view

(FOV) = 250 9 250 9 150 mm, 256 9 256 9 168

matrix, 1 mm isotropic voxels, sagittal partitions). The

final 20 scans were collected on a 3T Siemens MAGNE-

TOM Trio Tim MRI scanner with the following high-res-

olution MPRAGE sequence: TR/TE = 2500/1900 ms,

FA = 98, FOV = 250 mm 9 250 mm 9 250 mm, 1 mm

isotropic voxels, sagittal partitions. It should be noted that

Freesurfer morphometric procedures (described below)

have been demonstrated to show good test–retest reliability

across scanner manufacturers and across field strengths

(Reuter et al. 2012; Han et al. 2006). In our sample, there

were no significant volumetric differences between the two

scanners for any of our OFC regions of interest (ROIs) or

whole brain gray matter (all Ps C 0.19).

Magnetic resonance image processing

We performed cortical reconstruction and volumetric seg-

mentation with the Freesurfer image analysis suite (http://

surfer.nmr.mgh.harvard.edu/). The technical details of

these procedures have been described in detail in a number

of earlier publications (Dale et al. 1999; Desikan et al.

2006; Fischl and Dale 2000; Fischl et al. 1999, 2002).

Freesurfer image processing includes the following steps:

motion correction, removal of non-brain tissue, automated

normalization to Talairach space, segmentation into sub-

cortical white matter and gray matter, normalization of

overall image intensity, defining the gray and white matter

boundary, topology correction, and surface deformation.

This last step is accomplished by following intensity

gradients to optimally place the gray/white and gray/cere-

brospinal fluid borders at the location where the greatest

shift in intensity defines the transition to the other tissue.

Freesurfer then performs a number of additional procedures

including surface inflation, registration to a spherical atlas

based on individual cortical folding patterns, parcellation

of the cerebral cortex into units based on gyral and sulcal

structure, and the creation of surface based data including

maps of curvature and sulcal depth.

Following these procedures, we derived mean gray

matter volumes for three OFC ROIs in each hemisphere

(Fig. 1) of each individual. Delineation of the OFC ROIs

was defined using the Desikan–Killiany Atlas (Desikan

et al. 2006) following the automated parcellation proce-

dures described in Fischl et al. (2002). Three Desikan–

Killiany masks were used to precisely characterize the

topography of the OFC: (1) medial OFC: medial to

olfactory sulcus, spanning the rectal gyrus ventrally and the

medial orbital gyrus dorsally; (2) lateral OFC: between the

olfactory sulcus and the lateral orbital sulcus, spanning the

medial-to-lateral orbital gyrus; and (3) pars orbitalis: lat-

eral to the lateral orbital sulcus, spanning the lateral orbital

gyrus. All ROIs were visually inspected to ensure appro-

priate parcellation.

Analyses

We tested for a positive correlation between euphoric

experience and OFC volume in each of the three OFC ROIs

across both cerebral hemispheres (adjusted a = 0.0083;

i.e., P = 0.05/6 comparisons, 3 ROIs 9 2 hemispheres).

Using Pearson’s partial correlations, we controlled for the

effects of age, gender, handedness, scanner, state anxiety,

sensation seeking, and intracranial volume (Ge et al. 2002;

Tisserand et al. 2004; Welborn et al. 2009; Carlson et al.

2015).

Given that mOFC processing of threat versus safety cues

(Greenberg et al. 2013a, b) has been linked to structural

variability across a broader circuit (Cha et al. 2014), we

performed a stepwise linear regression (P\ 0.05 to enter

and P[ 0.10 for removal) analysis to test (1) the degree to

which the correlation between the mOFC and euphoria

holds when additional brain regions are considered and if

so, (2) whether additional variance can be explained by

adding other components of the circuit. For this regression

model we included the following volumetric variables for

each hemisphere: medial OFC, lateral OFC, pars orbitalis,

nucleus accumbens, amygdala, hippocampus, and a total

amygdalo-hippocampal complex, which is meant to rep-

resent the affective/limbic contribution to the mOFC-cen-

tered corticolimbic circuit (Pitkänen et al. 2006; Roy et al.

2012). In addition, we included the following control

variables: age, gender, handedness, scanner, state anxiety,
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sensation seeking, and intracranial volume. Correlations

between these volume measures can be seen in Supple-

mentary Figure 2).

Using linear stepwise regression to select our variables

of interest, we then performed path analysis in AMOS 18

(SPSS, Inc.) to compare three models assessing the rela-

tionship between temporal lobe limbic structures (i.e.,

amygdala and hippocampus) and the mOFC on euphoric

experience: (Model 1) limbic structures and the mOFC

independently contribute to euphoric experience, (Model 2)

limbic structures influence the mOFC, which in turn affects

euphoric experience, and (Model 3) the mOFC influences

limbic structures, which in turn affects euphoric experi-

ence. Given that our original set of control variables did not

help explain variability in euphoric experience and their

inclusion produced poor fit in preliminary path analyses,

we restricted confounding variables during the model

comparison phase to scanner and intracranial volume. For

our model comparisons we considered goodness of fit

measures, such as Akaike’s Information Criterion (AIC),

the root mean square error of approximation (RMSEA),

and the comparative fit index (CFI). Cutoff criteria for

RMSEA (\0.06) and CFI (0.95) were considered (Hu and

Bentler 1999). Additionally, we employed a bootstrapping

approach (Linhart and Zucchini 1986). Similar to previous

work (Carlson et al. 2014), the bootstrapping approach

used four steps: (1) Bootstrap samples were generated

using the original data as the population. (2) Using the

maximum likelihood function for each iteration (1000

bootstrap samples) the discrepancy between each sample

and the population was calculated. (3) The average dis-

crepancy across bootstrap samples for each model was

calculated. (4) The models were compared based on the

mean discrepancy.

For our final analysis, we used support vector regression

(SVR), which unlike univariate analytical methods con-

siders multivariate ‘‘patterns’’ of variables instead of each

variable independently. Therefore, it may be more appro-

priate when a circuit-wide pattern is expected to be

important. This approach allows for inferences at the level

of the individual and thus allows us to predict an individ-

ual’s euphoria level based on the pattern of brain volumes

across the mOFC-centered corticolimbic circuit. Euphoria

scores were fitted with a linear SVR machine with random

feature elimination (RFE; Guyon et al. 2002) using the

volumetric predictor variables included in the aforemen-

tioned regression model (i.e., bilateral medial OFC, lateral

OFC, pars orbitalis, nucleus accumbens, amygdala, hip-

pocampus, and a total amygdalo-hippocampal structure).

To assess the predictive capacity of the variables, a two-

tiered cross validation (CV) scheme was implemented.

First, the data were split into leave-one-out (LOO) training

and testing folds. For each training fold an additional

LOO–CV was carried out to select model parameters—the

soft margin of the SVM, and the number of features by

applying RFE. Next, the SVR model was fitted to the entire

training fold, and was used to predict the euphoria score of

the test fold. This two-tiered LOO–CV resulted in a vector

of predictions, which could be compared to the actual

scores via the correlation coefficient. The significance of

the resulting correlation was assessed through bootstrap-

ping where we permuted the euphoria scores randomly 500

times, and then applied the same CV procedure to each of

the resulting data sets to yield an empirical estimate of the

Fig. 1 Delineation of the orbitofrontal cortex (OFC) into three

regions of interest (ROIs): (1) medial OFC (in red), medial to the

olfactory sulcus, spanning the rectal gyrus and the medial orbital

gyrus; (2) lateral OFC (in yellow), between the olfactory sulcus and

the lateral orbital sulcus, spanning the medial-to-lateral orbital gyrus;

and (3) pars orbitalis (in blue), lateral to the lateral orbital sulcus,

spanning the lateral orbital gyrus. Three masks from the Desikan–

Killiany Atlas (Desikan et al. 2006) were used to characterize the

topographical architecture of the three OFC ROIs
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significance of the predication. SVR was performed using

Neuroclass (Fekete et al. 2013) and the Library for SVM

(LIB–SVM) toolbox (Chang and Lin 2011).

Results

Behavior

Relative to baseline levels, participants’ self-report

euphoria levels were greatly elevated (main effect,

F1,30 = 32.04, P = 0.000004). An interaction between day

(skydive vs. control) and time-point (pre-jump vs. post-

jump) revealed that although euphoria was elevated

immediately prior to jumping, it increased even further

upon landing, F1,30 = 12.35, P = 0.001; see Fig. 2. Thus,

as expected, skydiving was effective in eliciting a height-

ened level of euphoria.

Orbitofrontal cortex correlations with euphoric

experience

As shown in Fig. 3, greater left mOFC volumes were

predictive of greater levels of self-reported euphoria upon

landing when euphoric experience was at its peak (rpar-

tial = 0.55, P = 0.003). We found a similar association

between the left mOFC and self-reported euphoria prior to

jumping as well (rpartial = 0.44, P = 0.019); however, this

effect did not reach significance when correcting for mul-

tiple comparisons. Such effects were not observed in other

OFC regions (all Ps C 0.19). In follow-up partial correla-

tions controlling for age, handedness, scanner, gender,

sensation seeking, and intracranial volume (Ge et al. 2002;

Tisserand et al. 2004; Welborn et al. 2009) we show that no

OFC regions correlated with state anxiety (all Ps C 0.14).

Therefore, individuals’ experienced level of skydive-in-

duced euphoria was uniquely linked to the volume of their

left mOFC such that, greater mOFC volume was associated

with greater euphoria.

Orbitofrontal circuit-level predictors of euphoric

experience

Stepwise linear regression indicated that prejump levels of

euphoric experience were predicted by the left mOFC

(b = 0.40, P = 0.002), left amygdalo-hippocampal com-

plex (b = -0.50, P = 0.001), and prejump state anxiety1

(b = -0.35, P = 0.01), F3,29 = 13.41, P = 0.00002,

R2 = 0.61. Post-jump euphoria was predicted by the left

mOFC (b = 0.45, P = 0.005) and left amygdalo-hip-

pocampal complex (b = -0.60, P = 0.0004),

F3,29 = 10.43, P = 0.0004, R2 = 0.44. Thus, in addition to

the relationship between euphoric experience and the left

mOFC, the left amygdalo-hippocampal complex also

appears to be associated with euphoric experience; how-

ever, the nature of this relationship suggests that smaller

amygdalo-hippocampal volumes are associated with

greater reported euphoria.

Given that linear regression identified the left mOFC

and amygdalo-hippocampal complex as significantly

explaining variability in euphoric experience, we per-

formed a path analysis on these structures to model the

relationship between the structures in this circuit and

euphoric experience. As displayed in Table 1, the results

suggest that the parallel model in which the left mOFC and

amygdalo-hippocampal complex directly influence eupho-

ric experience independently outperforms the serial models

as indicated by the best goodness of fit: lowest Akaike’s

Information Criterion (pre-jump: 48.10, post-jump: 47.95)

and bootstrap discrepancy (pre-jump: 48.65, post-jump:

47.45) as well as the best comparative fit index (pre-jump:

1.00, post-jump: 1.00) and root mean square error of

approximation (pre-jump:\0.00, post-jump:\0.00). In the

pre-jump parallel model the effect of the mOFC on

1 Note that the volume of the amygdalo-hippocampal complex was

positively correlated with prejump (left r = 0.39, P = 0.03, right

r = 0.34, P = 0.05) and postjump (left r = 0.47, P = 0.01, right

r = 0.39, P = 0.03) state anxiety in partial correlations controlling

for age, gender, handedness, sensation seeking, scanner, and

intracranial volume.

Fig. 2 A first-time tandem skydive was used to elicit a strong state of

subjective euphoria. Self-report levels of subjective euphoria were

elevated both pre-jump and post-jump relative to time-matched

samples on a control day
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euphoria was 0.57, P\ 0.001 and the effect of the left

amygdalo-hippocampal complex was -0.59, P\ 0.001.

Similarly, in the post-jump parallel model the effect of the

mOFC on euphoria was 0.47, P\ 0.001 and the effect of

the left amygdalo-hippocampal complex was -0.59,

P\ 0.001.

The results of our path analysis suggest that the volumes

of the left mOFC and amygdalo-hippocampal complex

independently explain variability in euphoric experience.

Given that left mOFC volume was positively associated

with euphoric experience while left amygdalo-hippocam-

pal volume was negatively correlated with euphoric expe-

rience, it seems that euphoric experience would be greatest

when mOFC volumes are larger and amygdalo-hip-

pocampal volumes are smaller. To further test this possi-

bility, we calculated the ratio of left mOFC/amygdalo-

hippocampal volume and tested for a positive relationship

with euphoric experience pre- and post-skydive. As

expected, the results of this analysis suggest that a larger

mOFC/amygdalo-hippocampal volume ratio is highly cor-

related with increased euphoric experience (pre-jump

R = 0.64, P\ 0.001; post-jump: R = 0.75, P\ 0.001;

these partial correlations controlled for age, handedness,

scanner, gender, state anxiety, sensation seeking, and

intracranial volume).

Multivariate predictive analysis

We used support vector regression to predict individuals’

level of euphoric experience based on brain volumes across

the following regions: medial OFC, lateral OFC, pars

orbitalis, nucleus accumbens, amygdala, hippocampus, and

the total amygdalo-hippocampal complex. The volumes of

the left mOFC, left hippocampus, and right accumbens

Fig. 3 The medial orbitofrontal cortex (OFC) region of interest

(Freesurfer Atlas averaged across all participants; Desikan et al. 2006)

is shown in green (Left). Scatter plot of individuals’ level of

experienced euphoric reactivity both pre-skydive and post-skydive

(relative to baseline levels collected on separate day) were positively

correlated with medial OFC volume (Right). The results show that

greater OFC volume was associated with greater euphoric experience

Table 1 Model comparisons

for euphoric experience
v2, df Bootstrapping1 AIC CFI RMSEA

Prejump euphoria

Parallel model 4.10, 5 48.65 48.10 1.00 \0.00

Serial model 1 19.96, 5 68.46 63.96 0.64 0.32

Serial model 2 18.94, 5 67.46 62.94 0.66 0.31

Independent model 56.00 – 80.00 – 0.30

Postjump euphoria

Parallel model 3.95, 5 47.45 47.95 1.00 \0.00

Serial model 1 18.24, 5 66.03 62.24 0.64 0.30

Serial model 2 13.90, 5 62.55 57.90 0.76 0.24

Independent model 51.74, 15 – 75.74 – 0.29

Model contains the combined volume of the amygdala/hippocampus (limbic) and medial orbitofrontal

cortex (mOFC) in the left hemisphere as predictors and scanner, intracranial volume, and age as control

variables
1 Discrepancy between samples and population in bootstrapping. Note Serial model 1 = limbic to mOFC,

Serial model 2 = mOFC to limbic, Parallel model = separate limbic and mOFC paths
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were found to be the best classifiers for pre-jump euphoric

experience, R = 0.38, P\ 0.05 (bootstrapping corrected).

On the other hand, the volumes of the left mOFC and left

amygdalo-hippocampal complex were the best classifiers

for post-jump euphoric experience, R = 0.56, P\ 0.005

(bootstrapping corrected).

Discussion

We found that first time skydiving increased levels of self-

reported euphoric experience both prior to jumping and

immediately upon landing (Fig. 2). Greater left mOFC

volume was found to correlate with greater euphoric

experience. Regression analyses indicated that in addition

to the left mOFC, the volume of the left amygdalo-hip-

pocampal complex also explained variability in euphoric

experience. These two volumetric variables were the pri-

mary predictors of euphoric experience, while sensation

seeking2 and other participant variables such as age and

gender did not predict euphoria. However, whereas left

mOFC volume, was positively correlated with euphoric

experience, left amygdalo-hippocampal complex volume

was negatively correlated with euphoric experience. Toge-

ther these two volumetric variables explained approxi-

mately 40 % of the variance in euphoric experience. Path

analysis suggested that mOFC and amygdalo-hippocampal

complex volumes did not interact directly, but rather cor-

relate with euphoria in a parallel manner—providing evi-

dence for multiple distinct pathways to euphoric states.

Additionally, multivariate predictive analysis showed that

left mOFC volume in conjunction with the volume of other

structures including the amygdalo-hippocampal complex

and nucleus accumbens can be used to predict euphoria on

an individual-by-individual basis.

A large number of neuroimaging studies suggest that the

OFC responds to a variety of reward-related stimuli

including pleasant tastes (Kringelbach et al. 2003; O’Do-

herty et al. 2002), pleasant sounds (Royet et al. 2000),

pleasant visual images and attractive faces (O’Doherty

et al. 2003; Ishai 2007; Royet et al. 2000; Nitschke et al.

2003), monetary rewards (Carlson et al. 2011; O’Doherty

et al. 2001), social cooperation (Rilling et al. 2002), erotic

images (Walter et al. 2008), and sexual chemosensory

signals (Zhou and Chen 2008). Activity in the OFC has

also been linked to the subjective feeling of pleasantness

(Kringelbach et al. 2003; Nitschke et al. 2003). Meta-an-

alytic data suggest that it is the mOFC in particular that is

responsive to pleasant or rewarding stimuli, whereas the

lateral OFC is more responsive to negatively valenced

stimuli (Kringelbach and Rolls 2004). However, most of

these reward stimuli either directly (e.g., food and sex) or

indirectly (e.g., money) aid an organism’s survival. On the

other hand, skydive-induced euphoria is not driven by

survival, but rather is done for pure entertainment or play.

Although play is an important aspect of development in

many species (Fagen 1974), the extreme-level of play

represented by skydiving seems to be specific to humans

and the pleasantness of this experience is person-specific

(Carlson et al. 2012). Another non-need-based experience

that humans find uniquely pleasant is music, which can

elicit great pleasure in the form of musical chills. Similar to

skydiving, the type of music that elicits such chills is

person-specific and is linked to the mOFC as well as

additional emotion and reward-related brain regions (Blood

and Zatorre 2001).

Much empirical and theoretical work has linked the

nucleus accumbens to reward anticipation or wanting and

the prefrontal cortex/OFC with reward attainment (O’Do-

herty et al. 2002; Knutson et al. 2001b; Berridge and

Robinson 2003). However, a recent meta-analysis of the

functional neuroimaging data suggests that both structures

are active prior to and after reward attainment (Bartra et al.

2013). The differential involvement of brain regions pre

versus post reward is particularly relevant for motivational

and learning-related reward processes, respectively. How-

ever, reward processing is not limited to motivation and

cognitive learning processes, but also contains a subjective

affective component. The mOFC is thought to serve as a

hub of multimodal integration across sensory and cognitive

systems (Cha et al. 2014; Kringelbach 2005; Roy et al.

2012), which supports a unified state of subjective aware-

ness—including hedonic experience (Kringelbach 2005).

Our results suggest that the left mOFC is associated with

the subjective experience of euphoria, whether this affec-

tive experience precedes or follows the actual reward. On

the other hand, our multivariate predictive analysis iden-

tified the nucleus accumbens as a predictor of euphoric

experience pre-jump/reward, but not post, which provides

partial support for the idea that the nucleus accumbens is

associated with the wanting or anticipation phase of reward

processing (O’Doherty et al. 2002; Knutson et al. 2001b;

Berridge and Robinson 2003) and in particular during

anticipatory euphoric experience.

Beyond the left mOFC and reward circuit structures we

found an inverse association between euphoric experience

and the volume of medial temporal lobe limbic struc-

tures—namely, the amygdala and hippocampus. The

amygdalo-hippocampal complex is an anatomically and

functionally defined circuit associated with a variety of

affective processes (McGaugh 2002; Pitkänen et al. 2006;

2 For those interested in reading more about the relationship between

sensation seeking, state euphoria, state anxiety, and cortisol reactivity

to skydiving we refer you to our previous work assessing these

variables (Mujica-Parodi et al. 2014; Carlson et al. 2012).
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Phelps 2004; Phan et al. 2002). The amygdala has tradi-

tionally been associated with threat and stress reactivity

(LeDoux 1996; McGaugh 2002; Davis 1992; Davis and

Whalen 2001; Adolphs et al. 2005), but has also been

found to be engaged by a number of other affective pro-

cesses including positive emotions and reward processing

(Berridge and Robinson 2003; Canli et al. 2002; Hamann

et al. 2002; Hamann and Mao 2002; O’Doherty et al. 2002;

Carlson et al. 2011; Greenberg et al. 2014). Meta-analysis

of the functional neuroimaging research suggests that the

amygdala and hippocampus are both involved in the

emotions of fear and happiness (Phan et al. 2002).

Although more research will be needed to clarify the pre-

cise role of the amygdalo-hippocampal complex in

euphoric experience, our results suggest that the volumes

of the left mOFC and amygdalo-hippocampal complex

independently explain variability in euphoric experience in

a parallel fashion such that when mOFC volumes are larger

and amygdalo-hippocampal volumes are smaller euphoric

experience is greater.

Our finding of increased euphoric experience in individ-

uals with larger left mOFC volume complements volumetric

research in MDD and schizophrenia. As mentioned in the

introduction, both MDD and schizophrenia are characterized

by anhedonia and both disorders are associated with reduced

volume in the mOFC3 (Rajkowska 2000; Liao et al. 2015;

Baare et al. 1999; Gur et al. 2000; Grieve et al. 2013;

Lorenzetti et al. 2009; Koolschijn et al. 2009; Kempton et al.

2011). The extent of volume reduction in the mOFC has been

found to inversely correlate with symptoms of anhedonia

(Rosso et al. 2010). Furthermore, bipolar disorder is char-

acterized by fluctuating states of anhedonia and euphoric

mania. Successful lithium-based treatment, alleviating

depressive symptoms, in bipolar disorder is associated with

increased mOFC gray matter post-treatment (Moore et al.

2009). It should be noted that on a functional level other

structures such as the nucleus accumbens and anterior cin-

gulate cortex show abnormal reward processing in relation to

anhedonia in depressed individuals (Pizzagalli et al. 2009;

Foti et al. 2014; Steele et al. 2007; Greenberg et al. 2015;

Knutson et al. 2008; Keedwell et al. 2005; Wacker et al.

2009), which may in part be attributable to reduced mOFC

volume in depression (Wagner et al. 2008). Our results add to

this literature by indicating that not only is mOFC volume

linked to the absence of pleasure, but also extreme pleasure.

Collectively, these results suggest that the volume of the

mOFC may represent an individual’s capacity for joy or

pleasure, which ranges from anhedonia to euphoria.

Our results suggest that in addition to mOFC volume

being associated with the expression of positive affect

(Welborn et al. 2009), it is also linked to the experience of

euphoria. We found this to be true for the left, but not right,

mOFC as well as the left amygdalo-hippocampal complex.

The left lateralized nature of these findings was not

hypothesized. Although typically associated with more

dorsal prefrontal regions, traditional affective frontal

asymmetries have linked the left hemisphere to positive

emotions (Coan and Allen 2003; Davidson 1992; Sackeim

et al. 1982; Gilbert et al. 2008). A more recent reconcep-

tualization of frontal asymmetries suggests the left hemi-

sphere is more associated with approach motivated emotive

states including excitement (Harmon-Jones et al. 2010;

Harmon-Jones and Allen 1998). While it is tempting to

interpret this left mOFC effect in the context of the frontal

asymmetry theory, further research is needed to test the

robustness of this lateralized finding.

Although our study linked variability in left mOFC

volume to skydive-induced euphoric experience, it should

be noted that—given the nature of our euphoric induc-

tion—our sample size was relatively small, which limits

the ability to detect more subtle brain-behavior relation-

ships than that observed in the left mOFC. Thus, further

research will be needed to both test the generalizability of

this association to additional types of euphoric experiences

and also assess, in a larger sample, the possibility of

weaker associations in other brain regions. It should also be

noted that the mOFC region identified here as correlating

with euphoric experience is somewhat more ventral than

that typically observed in fMRI-based reward-related tasks

(Bartra et al. 2013). This apparent discrepancy between

structure and function may in part be due to the well-

known signal dropout affecting the most ventral aspects of

the mOFC and ACC in gradient-echo fMRI. Finally, it

should be noted that it is unclear if variability in left mOFC

volume represents a predisposition for heightened euphoric

experience or on the other hand, is the consequence of

greater euphoric experiences across time. In either case, we

show that subjective euphoric experience is linked to left

mOFC volume, which may serve as a neural correlate of

euphoria-related individual differences.
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